ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник $ABC$ с прямым углом $C$. Точки $K$, $L$, $M$ – середины сторон $AB$, $BC$, $CA$ соответственно, $N$ – точка на стороне $AB$. Прямая $CN$ пересекает $KM$ и $KL$ в точках $P$ и $Q$. Точки $S$, $T$ на сторонах $AC$, $BC$ таковы, что четырехугольники $APQS$, $BPQT$ – вписанные. Докажите, что а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке; б) если $CN$ – высота, то $ST$ проходит через середину $ML$. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 112]
Бумажный прямоугольный треугольник АВС перегнули по прямой так, что вершина С прямого угла совместилась с вершиной В и получился четырёхугольник. В каких отношениях точка пересечения диагоналей четырёхугольника делит эти диагонали?
Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника.
В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности.
а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке; б) если $CN$ – высота, то $ST$ проходит через середину $ML$.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 112] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|