ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
AB — диаметр окружности, CD — хорда этой окружности. Перпендикуляры к хорде, проведённые через её концы C и D, пересекают прямую AB в точках K и M соответственно. Докажите, что AK = BM.
Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что BL = СМ. Докажите, что треугольник LMK – также прямоугольный равнобедренный. С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы. В стране Древляндия 101 город, и некоторые из них соединены дорогами. При этом каждые два города соединяет ровно один путь. Стороны треугольника ABC касаются вписанной окружности в точках K, P и M, причём точка M расположена на стороне BC. Найдите угол KMP, если ∠A = 2α.
С помощью циркуля и линейки постройте треугольник по центру его описанной окружности и двум прямым, на которых лежат высоты треугольника.
В кружке у каждого члена имеется один друг и один враг. Доказать, что Отрезки AA1 , BB1 и CC1 , концы которых лежат на сфере радиуса 10, попарно перпендикулярны и пересекаются в точке M . Известно, что AA1=12 , BB1 =18 и CM:MC1=11:3 . Найдите расстояние от центра сферы до точки M, p простых чисел a1, a2, ..., ap образуют возрастающую арифметическую прогрессию и a1 > p. Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д. Пусть E – одна из двух точек пересечения окружностей ω1 и ω2. Пусть AB – общая внешняя касательная этих окружностей, прямая CD параллельна AB, причем точки A и C лежат на ω1, а точки B и D – на ω2. Окружности ABE и CDE повторно пересекаются в точке F. Докажите, что F делит одну из дуг CD окружности CDE пополам.
AB и AC — две хорды, образующие угол BAC, равный
70o.
Через точки B и C проведены касательные до пересечения в точке M.
Найдите
Окружность вписана в треугольник со сторонами, равными a, b и c. Найдите отрезки, на которые точка касания делит сторону, равную a.
Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.
Постройте хорду данной окружности, равную и параллельную заданному отрезку.
На доске написаны две суммы:
1 + 22 + 333 + 4444 + 55555 + 666666 +7777777 + 88888888 + 999999999 Определите, какая из них больше (или они равны). Плоская выпуклая фигура ограничена отрезками AB и AC и дугой BC некоторой окружности. Постройте какую-нибудь прямую, которая делит пополам её площадь. На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
Докажите, что
a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 С помощью циркуля и линейки постройте треугольник по двум углам A, B и периметру P. Диагонали вписанно-описанного четырехугольника ABCD пересекаются в точке L. Даны три отрезка, равные AL, BL, CL. Восстановите четырехугольник с помощью циркуля и линейки. На боковой стороне BC равнобедренного треугольника ABC как
на диаметре построена окружность, пересекающая основание этого треугольника в точке D. Найдите расстояние от вершины A до центра окружности, если AD = Дан вписанный четырехугольник ABCD. На сторонах AD и CD взяты точки E и F так, что AE=BC и AB=CF. Пусть M – середина EF. Докажите, что угол AMC прямой. |
Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 352]
На боковых сторонах AB и AC равнобедренного треугольника ABC отметили точки K и L соответственно так, что AK = CL и ∠ALK + ∠LKB = 60°.
Внутри равнобедренного треугольника ABC отмечена точка K так, что CK=AB=BC и ∠ KAC = 30°. Найдите угол AKB.
Дан вписанный четырехугольник ABCD. На сторонах AD и CD взяты точки E и F так, что AE=BC и AB=CF. Пусть M – середина EF. Докажите, что угол AMC прямой.
В остроугольном треугольнике ABC проведены высоты AHA,
BHB и CHC.
На плоскости даны две пересекающиеся окружности. Точка A – одна из двух точек пересечения. В каждой окружности проведён диаметр, параллельный касательной в точке A к другой окружности, причём эти диаметры не пересекаются. Докажите, что концы этих диаметров лежат на одной окружности.
Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке