Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Две окружности касаются описанной окружности треугольника ABC в точке K; кроме того, одна из этих окружностей касается стороны AB в точке M, а другая касается стороны AC в точке N. Докажите, что центр вписанной окружности треугольника ABC лежит на прямой MN.

Вниз   Решение


Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где  (i, j, k, l)  – перестановка чисел  (1, 2, 3, 4)  (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны.

ВверхВниз   Решение


На дуге CD описанной окружности квадрата ABCD взята точка P. Докажите, что  PA + PC = $ \sqrt{2}$PB.

ВверхВниз   Решение


Среди всех треугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.

ВверхВниз   Решение


Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.

ВверхВниз   Решение


Площадь данного выпуклого четырёхугольника равна S. Найдите площадь четырёхугольника с вершинами в серединах сторон данного.

ВверхВниз   Решение


Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)

ВверхВниз   Решение


Найдите предел последовательности, которая задана условиями

a1 = 2,        an + 1 = $\displaystyle {\dfrac{a_n}{2}}$ + $\displaystyle {\dfrac{a_n^2}{8}}$    (n $\displaystyle \geqslant$ 1).


ВверхВниз   Решение


Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей?

ВверхВниз   Решение


Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и C1. Пусть Q — середина отрезка A1B1. Докажите, что $ \angle$B1C1C = $ \angle$QC1A1.

ВверхВниз   Решение


В тетраэдре ABCD все плоские углы при вершине A равны по 60o . Докажите, что AB + AC + AD BC + CD + DB .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 110268

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11

Сколько существует различных пирамид, все рёбра которых равны 1?
Прислать комментарий     Решение


Задача 78041

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

Дан трехгранный угол с вершиной O. Можно ли найти такое плоское сечение ABC, чтобы углы OAB, OBA, OBC, OCB, OAC, OCA были острыми?
Прислать комментарий     Решение


Задача 67375

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Тетраэдр и пирамида (прочее) ]
[ Многогранники и многоугольники (прочее) ]
[ Векторы помогают решить задачу ]
[ Теорема Хелли ]
Сложность: 4-
Классы: 10,11

При каком наибольшем n существует выпуклый многогранник с n гранями, обладающий следующим свойством: для любой грани найдется точка вне многогранника, из которой видны остальные n1 грани?
Прислать комментарий     Решение


Задача 87115

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 8,9

В тетраэдре ABCD все плоские углы при вершине A равны по 60o . Докажите, что AB + AC + AD BC + CD + DB .
Прислать комментарий     Решение


Задача 87635

Тема:   [ Трехгранные и многогранные углы (прочее) ]
Сложность: 4
Классы: 10,11

На какое наименьшее число непересекающихся трёхгранных углов можно разбить пространство?
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .