Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Докажите, что  ½ (x² + y²) ≥ xy  при любых x и y.

Вниз   Решение


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

ВверхВниз   Решение


В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

ВверхВниз   Решение


Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.

ВверхВниз   Решение


Из точки, данной на окружности, проведены диаметр и хорда, равная радиусу. Найдите угол между ними.

ВверхВниз   Решение


Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

ВверхВниз   Решение


Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
  а) Какова вероятность того, что они встретятся?
  б) Как изменится вероятность встречи, если Женя решит прийти раньше половины первого, а Коля по-прежнему – между полуднем и часом?
  в) Как изменится вероятность встречи, если Женя решит прийти в произвольное время с 12.00 до 12.50, а Коля по-прежнему между 12.00 и 13.00?

ВверхВниз   Решение


Докажите, что уравнение  3x² + 2 = y²  нельзя решить в целых числах.

ВверхВниз   Решение


Докажите, что     при  x ≥ 0.

ВверхВниз   Решение


Докажите, что  (a + b - c)/2 < mc < (a + b)/2, где a, b и c - длины сторон произвольного треугольника, mc - медиана к стороне c.

ВверхВниз   Решение


Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

ВверхВниз   Решение


Саша и Илья должны были пробежать 600 метров. Но Саша первую половину времени бежал, а вторую – шёл. А Илья первую половину дистанции бежал, а вторую – шёл. И стартовали, и финишировали мальчики одновременно. Ходят они оба со скоростью 5 км/ч. С какой скоростью бежал Илья, если Саша бежал со скоростью 10 км/ч?

ВверхВниз   Решение


Доказать, что в произведении  (1 – x + x² – x³ + ... – x99 + x100)(1 + x + x² + x³ + ... + x99 + x100)  после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих x в нечётной степени.

ВверхВниз   Решение


Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

ВверхВниз   Решение


Автор: Анджанс А.

Берутся всевозможные непустые подмножества из множества чисел   1, 2, 3, ..., n.  Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 61507

 [Производящие функции многочленов Чебышева]
Темы:   [ Производящие функции ]
[ Многочлены Чебышева ]
[ Специальные многочлены (прочее) ]
Сложность: 3+
Классы: 10,11

Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:

Определения многочленов Чебышева можно найти в справочнике.

Прислать комментарий     Решение

Задача 97910

Темы:   [ Производящие функции ]
[ Классическая комбинаторика (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Анджанс А.

Берутся всевозможные непустые подмножества из множества чисел   1, 2, 3, ..., n.  Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.

Прислать комментарий     Решение

Задача 61493

Темы:   [ Производящие функции ]
[ Уравнения в целых числах ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 8,9,10,11

Пусть an – число решений уравнения  x1 + ... + xk = n   в целых неотрицательных числах и F(x) – производящая функция последовательности an.
  а) Докажите равенства:  F(x) = (1 + x + x² + ...)k = (1 – x)k.
  б) Найдите формулу для an, пользуясь задачей 61490.

Прислать комментарий     Решение

Задача 61504

Темы:   [ Производящие функции ]
[ Рекуррентные соотношения (прочее) ]
[ Числа Фибоначчи ]
Сложность: 4-
Классы: 9,10,11

а) Найдите производящую функцию последовательности чисел Люка (определение чисел Люка смотри в задаче 60585)

б) Пользуясь этой функцией, выразите Ln через φ и (см. задачу 61502).

Прислать комментарий     Решение

Задача 61506

 [Производящие функции многочленов Фибоначчи и Люка]
Темы:   [ Производящие функции ]
[ Специальные многочлены (прочее) ]
Сложность: 4-
Классы: 10,11

Найдите производящие функции последовательности многочленов Фибоначчи  F(x, z) = F0(x) + F1(x)z + F2(x)z² + ... + Fn(x)zn + ...
и последовательности многочленов Люка   L(x, z) = L0(x) + L1(x)z + L2(x)z² + ... + Ln(x)zn + ...
Определения многочленов Фибоначчи и Люка можно найти в справочнике.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .