Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В ряд посажены 2000 деревьев - дубы и баобабы. К каждому дереву прибита табличка, на которой указано количество дубов среди следующих деревьев: дерева, на котором висит табличка, и его соседей. Можно ли по числам на табличках определить, какие из деревьев - дубы?

Вниз   Решение


В каком из двух уравнений сумма квадратов корней больше
  а)  4x3 – 18x2 + 24x = 8,     4x3 – 18x2 + 24x = 9;
  б)  4x3 – 18x2 + 24x = 11,     4x3 – 18x2 + 24x = 12?

ВверхВниз   Решение


Автор: Фольклор

В окружность вписаны две равнобочные трапеции так, что каждая сторона одной трапеции параллельна некоторой стороне другой.
Докажите, что диагонали одной трапеции равны диагоналям другой.

ВверхВниз   Решение


Найдите радиус окружности, описанной около треугольника со сторонами a, a и b.

ВверхВниз   Решение


Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Найдите AC, если  CE = 3  и  DE = DC.

ВверхВниз   Решение


Точки  A1,..., A6 лежат на одной окружности, а точки K, L, M и N — на прямых  A1A2, A3A4, A1A6 и A4A5 соответственно, причем  KL| A2A3, LM| A3A6 и  MN| A6A5. Докажите, что  NK| A5A2.

ВверхВниз   Решение


Дан треугольник ABC, в котором  ∠A = α,  ∠B = β.  На стороне AB взята точка D, а на стороне AC – точка M, причём CD – биссектриса треугольника ABC,
DM || BC  и  AM = a.  Найдите CM.

ВверхВниз   Решение


Автор: Обухов Б.

Дан выпуклый пятиугольник ABCDE, все стороны которого равны между собой. Известно, что угол A равен 120°, угол C равен 135°, а угол D равен n°.
Найдите все возможные целые значения n.

ВверхВниз   Решение


Муравей ползает по проволочному каркасу куба, при этом он никогда не поворачивает назад.
Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?

ВверхВниз   Решение


Автор: Фольклор

Петя хочет изготовить необычную игральную кость, которая, как обычно, должна иметь форму куба, на гранях которого нарисованы точки (на разных гранях разное число точек), но при этом на каждых двух соседних гранях число точек должно различаться по крайней мере на два (при этом разрешается, чтобы на некоторых гранях оказалось больше шести точек). Сколько всего точек необходимо для этого нарисовать?

Вверх   Решение

Задачи

Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 2399]      



Задача 87640

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Все плоские углы трёхгранного угла равны по 60o . Найдите углы, образованные рёбрами этого трёхгранного угла с плоскостями противоположных граней.
Прислать комментарий     Решение


Задача 97771

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11

Автор: Анджанс А.

Будем говорить, что две пирамиды соприкасаются гранями, если эти пирамиды не имеют общих внутренних точек и некоторая грань одной пирамиды пересекается с некоторой гранью другой пирамиды по многоугольнику. Можно ли расположить восемь пирамид в пространстве так, чтобы каждые две соприкасались гранями?

Прислать комментарий     Решение

Задача 98043

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9,10

Автор: Фомин С.В.

Дано 27 кубиков одинакового размера: 9 красных, 9 синих и 9 белых. Можно ли сложить из них куб таким образом, чтобы каждый столбик из трёх кубиков содержал кубики ровно двух цветов? (Рассматриваются столбики, параллельные всем ребрам куба, всего 27 столбиков.)

Прислать комментарий     Решение

Задача 98166

Темы:   [ Наглядная геометрия в пространстве ]
[ Остовы многогранных фигур ]
[ Обход графов ]
[ Шахматная раскраска ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7,8

Муравей ползает по проволочному каркасу куба, при этом он никогда не поворачивает назад.
Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?

Прислать комментарий     Решение

Задача 98198

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

Петя хочет изготовить необычную игральную кость, которая, как обычно, должна иметь форму куба, на гранях которого нарисованы точки (на разных гранях разное число точек), но при этом на каждых двух соседних гранях число точек должно различаться по крайней мере на два (при этом разрешается, чтобы на некоторых гранях оказалось больше шести точек). Сколько всего точек необходимо для этого нарисовать?

Прислать комментарий     Решение

Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 2399]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .