Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.

Вниз   Решение


Даны точки A(1;0;1) , B(-2;2;1) , C(2;0;3) и D(0;4;-2) . Составьте параметрические уравнения прямой, проходящей через начало координат и пересекающей прямые AB и CD .

ВверхВниз   Решение


Дан куб ABCDA1B1C1D1 с ребром a . Найдите расстояние между прямыми BD1 и DC1 и постройте их общий перпендикуляр.

ВверхВниз   Решение


В треугольной пирамиде ABCD известно, что CD = a , а перпендикуляр, опущенный из середины ребра AB на CD , равен b и образует равные углы α с гранями ACD и BCD . Найдите объём пирамиды.

ВверхВниз   Решение


Периметр ромба равен 48, а сумма диагоналей равна 26. Найдите площадь ромба.

ВверхВниз   Решение


Дан остроугольный треугольник $ABC$. Точки $A_0$ и $C_0$ – середины меньших дуг соответственно $BC$ и $AB$ его описанной окружности. Окружность, проходящая через $A_0$ и $C_0$, пересекает прямые $AB$ и $BC$ в точках $P$ и $S$, $Q$ и $R$ соответственно (все эти точки различны). Известно, что $PQ\parallel AC$. Докажите, что $A_0P+C_0S=C_0Q+A_0R$

ВверхВниз   Решение


Найдите расстояния между скрещивающимися медианами двух граней правильного тетраэдра со стороной a .

ВверхВниз   Решение


На боковых сторонах AD и BC трапеции ABCD взяты точки P и Q соответственно, причём AP:PD = 3:2 . Отрезок PQ разбивает трапецию на части, одна из которых по площади вдвое больше другой. Найдите отношение CQ:QB , если AB:CD = 3:2 .

ВверхВниз   Решение


Перпендикуляр, опущенный из вершины прямоугольника на его диагональ, делит её в отношении 1:3. Найдите диагональ, если известно, что точка её пересечения с другой диагональю удалена от большей стороны на расстояние, равное 2.

ВверхВниз   Решение


С помощью циркуля и линейки постройте ромб по данному отношению диагоналей и данной стороне.

ВверхВниз   Решение


Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).

ВверхВниз   Решение


Докажите, что все вписанные в эллипс ромбы описаны вокруг одной окружности.

ВверхВниз   Решение


Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 

Вверх   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 276]      



Задача 78267

Темы:   [ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

a, b, p – любые целые числа. Доказать, что найдутся такие взаимно простые k, l, что  ak + bl  делится на p.

Прислать комментарий     Решение

Задача 79651

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9

Доказать, что найдётся число вида
  а) 1989...19890...0 (несколько раз повторено число 1989, а затем стоит несколько нулей), делящееся на 1988;
  б) 1988...1988, делящееся на 1989.

Прислать комментарий     Решение

Задача 98234

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Числа Фибоначчи ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9,10

Можно ли из последовательности  1, ½, ⅓, ... выбрать (сохраняя порядок)
  а) сто чисел,
  б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2ak–1)?

Прислать комментарий     Решение

Задача 98252

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).

Прислать комментарий     Решение

Задача 98263

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 
Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 276]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .