Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 2404]
|
|
|
Сложность: 4 Классы: 7,8,9,10
|
Домашнее задание. Повесьте ботинок со шнурками за боковую сторону
стола (не за угол!) с помощью трех спичек.
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?
|
|
|
Сложность: 4 Классы: 9,10,11
|
Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных
кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка
после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми
четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только
три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?
Докажите, что медианы тетраэдра (отрезки, соединяющие
вершины с точками пересечения медиан противоположных
граней) и отрезки, соединяющие середины противоположных
рёбер, пересекаются в одной точке.
Теорема косинусов для трёхгранного угла.
Пусть
α ,
β ,
γ – плоские углы
трёхгранного угла
SABC с вершиной
S , противолежащие
рёбрам
SA ,
SB ,
SC соответственно;
A ,
B ,
C –
двугранные углы при этих рёбрах. Докажите, что
cos A =
,
cos B =
,
cos C =
.
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 2404]