Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Из вершины A острого угла ромба ABCD опущены перпендикуляры AM и AN на продолжения сторон BC и CD. В четырёхугольник AMCN вписана окружность радиуса 1. Найдите сторону ромба, если $ \angle$BAC = 2arctg$ {\frac{1}{2}}$.

Вниз   Решение


Поставьте на плоскости 9 точек так, чтобы никакие 4 не лежали на одной прямой, но из любых шести нашлись 3, лежащие на одной прямой. (На рисунке проведите все прямые, на которых лежат по три отмеченные точки.)

ВверхВниз   Решение


Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

ВверхВниз   Решение


Какое наибольшее число пятниц может быть в году?

ВверхВниз   Решение


К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

ВверхВниз   Решение


Автор: Фольклор

В треугольнике ABC со сторонами  AB = 4,  AC = 6  проведена биссектриса угла A. На эту биссектрису опущен перпендикуляр BH.
Найдите MH, где M – середина BC.

ВверхВниз   Решение


Существует ли такой невыпуклый многогранник, что из некоторой точки М, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)

 

ВверхВниз   Решение


Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)

 

ВверхВниз   Решение


Найдите цифры a и b, для которых   = 0,bbbbb...

ВверхВниз   Решение


а) На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, отличные от вершин треугольника. Докажите, что описанные окружности треугольников  AB1C1, A1BC1 и A1B1C пересекаются в одной точке.
б) Точки A1, B1 и C1 перемещаются по прямым BC, CA и AB так, что все треугольники A1B1C1 подобны одному и тому же треугольнику. Докажите, что точка пересечения описанных окружностей треугольников  AB1C1, A1BC1 и A1B1C остается при этом неподвижной. (Треугольники предполагаются не только подобными, но и одинаково ориентированными.)

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?

ВверхВниз   Решение


Из точки M проведены касательные MA и MB к окружности с центром O (A и B – точки касания). Найдите радиус окружности, если  ∠AMB = α  и  AB = a.

ВверхВниз   Решение


Окружности радиусов r и R  (R > r)  касаются внешним образом в точке K. К ним проведены две общие внешние касательные. Их точки касания с меньшей окружностью – A и D, с большей – B и C соответственно.
  а) Найдите AB и отрезок MN общей внутренней касательной, заключённый между внешними касательными.
  б) Докажите, что углы AKB и O1MO2 – прямые (O1 и O2 – центры окружностей).

ВверхВниз   Решение


Автор: Фольклор

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.

ВверхВниз   Решение


Докажите, что любое движение плоскости является композицией не более чем трех симметрий относительно прямых.

ВверхВниз   Решение


На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)

ВверхВниз   Решение


а) На окружности фиксированы точки A и B, а точки A1 и B1 движутся по той же окружности так, что величина дуги A1B1 остается постоянной; M — точка пересечения прямых AA1 и BB1. Найдите ГМТ M.
б) В окружность вписаны треугольники ABC и A1B1C1, причем треугольник ABC неподвижен, а треугольник A1B1C1 вращается. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке не более чем при одном положении треугольника A1B1C1.

ВверхВниз   Решение


Найдите ГМТ X, лежащих внутри правильного треугольника ABC и обладающих тем свойством, что  $ \angle$XAB + $ \angle$XBC + $ \angle$XCA = 90o.

ВверхВниз   Решение


Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.

ВверхВниз   Решение


Верны ли утверждения:
  а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.

ВверхВниз   Решение


В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?

ВверхВниз   Решение


Докажите, что дроби 1000/2001 и 1001/2001 имеют равную длину периодов.

ВверхВниз   Решение


Дан треугольник ABC. Докажите, что композиция симметрий S = SACoSABoSBC является скользящей симметрией, для которой вектор переноса имеет длину 2R sin$ \alpha$sin$ \beta$sin$ \gamma$, где R — радиус описанной окружности, $ \alpha$, $ \beta$, $ \gamma$ — углы данного треугольника.

Вверх   Решение

Задача 57907
Тема:    [ Композиции движений. Теорема Шаля ]
Сложность: 6
Классы: 9
Из корзины
Прислать комментарий

Условие

Дан треугольник ABC. Докажите, что композиция симметрий S = SACoSABoSBC является скользящей симметрией, для которой вектор переноса имеет длину 2R sin$ \alpha$sin$ \beta$sin$ \gamma$, где R — радиус описанной окружности, $ \alpha$, $ \beta$, $ \gamma$ — углы данного треугольника.

Решение

Пусть точка A1 симметрична точке A относительно прямой BC. Тогда SBC(A1) = A, а при симметриях относительно прямых AB и AC точка A остаётся на месте. Поэтому преобразование S переводит точку A1 в A. Аналогично проверяется, что преобразование S переводит точку B в точку B1, симметричную B относительно прямой AC.
Согласно задаче 17.37 преобразование S является скользящей симметрией. Ось этой скользящей симметрии проходит через середины отрезков AA1 и BB1, т.е. через основания высот AH1 и BH2. Длина вектора переноса равна длине проекции отрезка AH1 на прямую H1H2. Угол между прямыми AH1 и H1H2 равен 90o - $ \alpha$, поэтому длина проекции отрезка AH1 на прямую H1H2 равна AH1cos(90o - $ \alpha$) = AH1sin$ \alpha$ = AC sin$ \alpha$sin$ \gamma$ = 2R sin$ \alpha$sin$ \beta$sin$ \gamma$.
Замечание. Если $ \angle$C = 90o, то точки H1 и H2 совпадают. Тем не менее, предельное положение прямой H1H2 определено однозначно, поскольку эта прямая антипараллельна стороне AB.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 17
Название Осевая симметрия
Тема Осевая и скользящая симметрии
параграф
Номер 6
Название Теорема Шаля
Тема Композиции движений. Теорема Шаля
задача
Номер 17.037-B1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .