ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Клетки бумажного квадрата $8 \times 8$ раскрашены в два цвета. Докажите, что Арсений может вырезать из него по линиям сетки два квадрата $2 \times 2$, не имеющих общих клеток, раскраски которых совпадают. (Раскраски, отличающиеся поворотом, считаются разными.) Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD. В треугольнике $ABC$ ($a>b>c$) указаны инцентр $I$, а также точки $K$ и $N$ касания вписанной окружности со сторонами $BC$ и $AC$ соответственно. Проведя не более трёх линий одной линейкой, постройте отрезок длины $a-c$. Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты? Биссектриса угла $A$ треугольника $ABC$ при продолжении пересекает описанную около него окружность $\omega$ в точке $W$. Окружность $s$, построенная на отрезке $AH$ как на диаметре ($H$ – ортоцентр в треугольнике $ABC$), пересекает $\omega$ в точке $P$. Восстановите треугольник $ABC$, если остались точки $A$, $P$, $W$. В треугольнике ABC AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что AE = ED. Найдите угол DAC. Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны. Постройте треугольник $ABC$ по вершине $A$, центру описанной окружности $O$ и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах $AB$ и $AC$ равные отрезки от вершины $A$. Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80. В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CD$. На отрезках $AD$ и $CD$ построены равносторонние треугольники $AED$ и $CFD$, так что точка $E$ лежит в той же полуплоскости относительно прямой $AB$, что и $C$, а точка $F$ лежит в той же полуплоскости относительно прямой $CD$, что и $B$. Прямая $EF$ пересекает катет $AC$ в точке $L$. Докажите, что $FL=CL+LD$. В треугольнике ABC биссектриса AL, серединный перпендикуляр к стороне AB и высота BK пересекаются в одной точке. Докажите, что биссектриса AL, серединный перпендикуляр к AC и высота CH, также пересекаются в одной точке. Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что KS || AC и LT || AB. Докажите, что точки P, Q, S и T лежат на одной окружности. Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2? Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан? На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что AK = KN = DN и BL = BC = CM. Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан. Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Описанные окружности треугольников AOB и COD пересекаются в точке M на стороне AD. Докажите, что точка O – центр вписанной окружности треугольника BMC. Фиксированы окружность, точка A на ней и точка K вне окружности. Секущая, проходящая через K, пересекает окружность в точках P и Q. Докажите, что ортоцентры треугольников APQ лежат на фиксированной окружности. Даны два приведённых квадратных трёхчлена. График одного из них пересекает ось Ox в точках A и M, а ось Oy – в точке C. График другого пересекает ось Ox в точках B и M, а ось Oy – в точке D. (O – начало координат; точки расположены как на рисунке.) Докажите, что треугольники AOC и BOD подобны. Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что A'K = B'K. Дан вписанный четырехугольник $ABCD$. Прямые $AB$ и $DC$ пересекаются в точке $E$, а прямые $BC$ и $AD$ — в точке $F$. В треугольнике $AED$ отмечен центр вписанной окружности $I$, а из точки $F$ проведен луч, перпендикулярный биссектрисе угла $AID$. В каком отношении этот луч делит угол $AFB$?
Угловые величины противоположных дуг, высекаемых на
окружности пересекающимися хордами, равны
В треугольнике ABC проведены высота AH, биссектриса BL и медиана CM. Известно, что в треугольнике HLM прямая AH является высотой, а BL – биссектрисой. Докажите, что CM является в этом треугольнике медианой. Попробуйте прочесть слово, изображённое на рис. 1, пользуясь ключом (см. рис. 2). Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число 1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей. Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов? На доске написаны n > 3 различных натуральных чисел, меньших чем (n – 1)!. Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил 100 = 14·7 + 2 и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных. a, b, c – натуральные числа, НОД(a, b, c) = 1 и Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого. (Треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри неё.) Бессмертная блоха прыгает по целым точкам на числовой прямой, стартуя с точки 0. Длина первого прыжка равна 3, второго – 5, третьего – 9, и так далее (длина k-го прыжка равна 2k + 1). Направление прыжка (вправо или влево) блоха выбирает самостоятельно. Может ли так случиться, что блоха рано или поздно побывает в каждой натуральной точке (возможно, побывав в некоторых точках больше, чем по разу)? Существует ли такое положительное число α, что при всех действительных x верно неравенство |cos x| + |cos αx| > sin x + sin αx? Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася. |
Задача 65752
УсловиеВнутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася. Решение Раскрасим стороны 100-угольника в чёрный и белый цвета так, чтобы каждые две соседних стороны имели разные цвета. Рассмотрим две одноцветные стороны AB и CD, образующие выпуклый четырёхугольник ABCD; пусть его диагонали AC и BD пересекаются в точке K. Предположим, что точка X лежит в треугольнике KBC (рис. слева). Укажем стратегию Пети для этого случая. Пусть RS – следующая за TR сторона 100-угольника. Если луч SX пересекает белую сторону, то аналогично доказывается, что луч RX также должен её пересекать, что не так. Значит, SX пересекает какую-то чёрную сторону, и можно повторить предыдущие рассуждения для вершины S. Рассуждая так и дальше, мы получим, что для каждой чёрной стороны T'R' найдётся чёрная сторона P'Q', которую пересекают оба луча T'X и R'X. Однако это неверно для чёрной стороны PQ (лучи PX и QX пересекают участки контура QT и RP соответственно). Противоречие. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке