ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа. Решите уравнение 3x + 5y = 7 в целых числах. Целые числа a, x1, x2, ..., x13 таковы, что a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13). Докажите, что ax1x2...x13 = 0. На окружности взяты точки
A, C1, B, A1, C, B1 в
указанном порядке.
Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1). а) Вписанная окружность треугольника ABC касается стороны AC
в точке D, DM — ее диаметр. Прямая BM
пересекает сторону AC в точке K. Докажите, что AK = DC.
В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис). Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30? На кошачьей выставке каждый посетитель погладил ровно трех кошек. При этом оказалось, что каждую кошку погладили ровно три посетителя. Докажите, что посетителей было ровно столько же, сколько кошек.Существует ли такое натуральное n, что для любых ненулевых цифр a и b число anb делится на ab ? (Через x...y обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.) Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0). Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел. а) Существуют ли четыре таких различных натуральных числа, что
сумма каждых трёх из них есть простое число? Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой. В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника. Около правильного тетраэдра ABCD описана сфера. На его гранях как на основаниях построены во внешнюю сторону правильные пирамиды ABCD', ABDC', ACDB', BCDA', вершины которых лежат на этой сфере. Найдите угол между плоскостями ABC' и ACD'. В лес за грибами пошли 11 девочек и n мальчиков. Вместе они собрали n² + 9n – 2 гриба, причём все они собрали поровну грибов. Докажите, что существует такой набор из 100 различных натуральных чисел
c1, c2, ..., c100, что для любых двух соседних чисел ci и ci+1 этого набора сумма Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а два или даже только один нолик. Каков здесь будет результат при правильной игре партнёров: удастся ли ноликам «запереть» крестики (и можно ли оценить сверху число ходов, которые могут «продержаться» крестики) или же крестики могут играть бесконечно долго? Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу |
Страница: << 1 2 [Всего задач: 8]
Через две вершины треугольника проведены прямые, разбивающие его на три треугольника и четырёхугольник. а) Могут ли площади всех четырёх частей быть равны? б) Какие три из этих частей могут иметь равные площади? Во сколько раз отличается от них площадь четвёртой части?
Дан правильный треугольник ABC . Через вершину B проводится произвольная прямая l , а через точки A и C проводятся прямые, перпендикулярные прямой l , пересекающие её в точках D и E . Затем, если точки D и E различны, строятся правильные треугольники DEP и DET , лежащие по разные стороны от прямой l . Найдите геометрическое место точек P и T .
Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а два или даже только один нолик. Каков здесь будет результат при правильной игре партнёров: удастся ли ноликам «запереть» крестики (и можно ли оценить сверху число ходов, которые могут «продержаться» крестики) или же крестики могут играть бесконечно долго? Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке