ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В прямой угол вписана окружность. Хорда, соединяющая точки касания, равна 2. Найдите расстояние от центра окружности до этой хорды.
Пусть P(x) = anxn + ... + a1x + a0 – многочлен с целыми коэффициентами. На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B. Найдите самое маленькое k, при котором k! делится на 2040. Пусть a, b и c – три различных числа. Решите систему
Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)? В параллелограмме ABCD на диагонали AC отмечена точка K . Окружность s1 проходит через точку K и касается прямых AB и AD , причём вторая точка пересечения s1 с диагональю AC лежит на отрезке AK . Окружность s2 проходит через точку K и касается прямых CB и CD , причём вторая точка пересечения s2 с диагональю AC лежит на отрезке KC . Докажите, что при всех положениях точки K на диагонали AC прямые, соединяющие центры окружностей s1 и s2 , будут параллельны между собой. Целые числа a и b таковы, что 56a = 65b. Докажите, что a + b – составное число. Докажите, что если f(x) – многочлен, степень которого меньше n, то дробь Правда или ложь? Пошел Иван-царевич искать Василису Прекрасную. Дошел до распутья и задумался. Вдруг видит — Баба-Яга. А про эту Бабу-Ягу всем было известно, что, через день на все вопросы она отвечает правду, а через день — ложь. Ивану-царевичу можно задать Бабе-Яге ровно один вопрос, после чего надо выбрать, по какой из двух дорог идти. Какой вопрос Иван-царевич может задать Бабе-Яге, чтобы наверняка выяснить, какая из дорог ведет в Кощеево царство? |
Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 1982]
В пространстве имеются четыре различные прямые, окрашенные в два цвета: две красные и две синие, причём любая красная прямая перпендикулярна любой синей прямой. Докажите, что либо красные, либо синие прямые параллельны.
В треугольнике ABC на сторонах AB, BC и AC взяты соответственно точки M, K и L так, что прямая MK параллельна прямой AC и ML параллельна BC. При этом отрезок BL пересекает отрезок MK в точке P, а AK пересекает ML в точке Q. Докажите, что отрезки PQ и AB параллельны.
Найдите все простые числа р, q, r, удовлетворяющие равенству pq + qp = r.
Может ли во время шахматной партии на каждой из 30 диагоналей оказаться нечётное число фигур?
В квадратной таблице из 9×9 клеток отмечены 9 клеток, лежащие на пересечении второй, пятой и восьмой строк со вторым, пятым и восьмым столбцами. Сколькими путями можно из левой нижней клетки попасть в правую верхнюю, двигаясь только по неотмеченным клеткам вверх или вправо?
Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 1982]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке