Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
  a1 – 3a2 + 2a3 ≥ 0,
  a2 – 3a3 + 2a4 ≥ 0,
  a3 – 3a4 + 2a5 ≥ 0,
    ...,
  a99 – 3a100 + 2a1 ≥ 0,
  a100 – 3a1 + 2a2 ≥ 0.
Доказать, что все числа ai равны между собой.

Вниз   Решение


В окружность с центром O вписана трапеция ABCD  (BC || AD).  В этой же окружности проведены диаметр CE и хорда BE, пересекающая AD в точке F. Точка H – основание перпендикуляра, опущенного из точки F на CE, S – середина отрезка EO, M – середина BD. Известно, что радиус окружности равен R, а  CH = 9R/8.  Найдите SM.

ВверхВниз   Решение


В равнобедренном треугольнике ABC (AB = AC) проведены биссектрисы AA1, BB1 и CC1. Площадь треугольника ABC относится к площади треугольника A1B1C1 как $ {\frac{9}{2}}$. Найдите отношение периметра треугольника A1B1C1 к периметру треугольника ABC.

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD, в котором  ∠DAB = 90°.  Пусть M – середина стороны BC. Оказалось. что  ∠ADC = ∠BAM.
Докажите, что  ∠ADB = ∠CAM.

ВверхВниз   Решение


Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что  NO ≤ 2MO.

ВверхВниз   Решение


Автор: Храбров А.

Положительные числа x, y и z удовлетворяют условию  xyz ≥ xy + yz + zx.  Докажите неравенство  

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 67013

Тема:   [ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9,10

Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность  $n - p$  также является простым числом.

Прислать комментарий     Решение

Задача 67038

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 3
Классы: 8,9

Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира:  2021:43 = 47.  Сколько ещё раз человечество сможет наблюдать это удивительное явление?

Прислать комментарий     Решение

Задача 67039

Темы:   [ Объем параллелепипеда ]
[ Вычисление объемов ]
Сложность: 3
Классы: 8,9,10,11

Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12.
Найдите объёмы белых параллелепипедов.

Прислать комментарий     Решение

Задача 67043

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10,11

Натуральное число $k$ назовём интересным, если произведение первых $k$ простых чисел делится на $k$ (например, произведение первых двух простых чисел – это  2·3 = 6,  и 2 – число интересное).
Какое наибольшее количество интересных чисел может идти подряд?

Прислать комментарий     Решение

Задача 67063

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Признаки делимости на 5 и 10 ]
Сложность: 3
Классы: 7,8,9,10

Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее.
Верно ли, что с какого-то момента все получающиеся у Пети числа будут содержать 5 в своей десятичной записи?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .