ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Иван-царевич имеет два волшебных меча, один из которых может отрубить Змею Горынычу 21 голову, а второй - 4 головы, но тогда у Змея Горыныча отрастает 1985 голов. Может ли Иван отрубить Змею Горынычу все головы, если в самом начале у него было 100 голов? (Примечание: если, например, у Змея Горыныча осталось лишь три головы, то рубить их ни тем, ни другим мечом нельзя).
Пусть ABCD – выпуклый четырехугольник. Докажите, что AB + CD < AC + BD. а) Докажите, что в последовательности чисел Фибоначчи при m ≥ 2 встречается не менее четырёх и не более пяти m-значных чисел. Верно ли, что два графа изоморфны, если |
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 1957]
Точки O и I – центры описанной и вписанной окружностей неравнобедренного треугольника ABC. Две равные окружности касаются сторон AB, BC и AC, BC соответственно; кроме этого, они касаются друг друга в точке K. Оказалось, что K лежит на прямой OI. Найдите ∠BAC.
По целому числу a построим последовательность a1 = a, a2 = 1 + a1, a3 = 1 + a1a2, a4 = 1 + a1a2a3, ... (каждое следующее число на 1 превосходит произведение всех предыдущих). Докажите, что разности ее соседних членов an+1 – an – квадраты целых чисел.
Последовательность (an) такова, что an = n² при 1 ≤ n ≤ 5 и при всех натуральных n выполнено равенство an+5 + an+1 = an+4 + an. Найдите a2015.
В прошлом году Миша купил смартфон, который стоил целое четырёхзначное число рублей. Зайдя в магазин в этом году, он заметил, что цена смартфона выросла на 20% и при этом состоит из тех же цифр, но в обратном порядке. Какую сумму Миша потратил на смартфон?
Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке