ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 1957]      



Задача 115499

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

На стороне AB прямоугольника ABCD выбрана точка M . Через эту точку проведён перпендикуляр к прямой CM , который пересекает сторону  AD в точке  E . Точка P  — основание перпендикуляра, опущенного из точки  M на прямую  CE . Найдите угол  APB .
Прислать комментарий     Решение


Задача 115504

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 8,9,10

Известно, что сумма любых двух из трёх квадратных трёхчленов  x² + ax + bx² + cx + dx² + ex + f  не имеет корней.
Может ли сумма всех этих трёхчленов иметь корни?

Прислать комментарий     Решение

Задача 115511

Темы:   [ Объем круглых тел ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 3
Классы: 10,11

В квадратной песочнице, засыпанной ровным слоем песка высотой 1, Маша и Паша делали куличи при помощи цилиндрического ведёрка высоты 2. У Маши все куличи удались, а у Паши — рассыпались и превратились в конусы той же высоты. В итоге весь песок ушёл на куличи, поставленные на дне песочницы отдельно друг от друга. Чьих куличей оказалось в песочнице больше: Машиных или Пашиных?
Прислать комментарий     Решение


Задача 116214

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 8,9,10

Что больше:  20112011 + 20092009  или  20112009 + 20092011?

Прислать комментарий     Решение

Задача 116215

Темы:   [ Турниры и турнирные таблицы ]
[ Математическая логика (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?

Прислать комментарий     Решение

Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .