Страница:
<< 136 137 138 139
140 141 142 >> [Всего задач: 1957]
|
|
Сложность: 3+ Классы: 7,8,9
|
Камни лежат в трёх кучках: в одной – 51 камень, в другой – 49, а в третьей – 5. Разрешается объединять любые кучки в одну, а также разделять кучку из чётного количества камней на две равные. Можно ли получить 105 кучек по одному камню в каждой?
|
|
Сложность: 3+ Классы: 9,10,11
|
Приведите пример многочлена P(x) степени 2001, для которого P(x) + P(1 – x) ≡ 1.
|
|
Сложность: 3+ Классы: 9,10
|
Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.
Верно ли, что её двадцатый член также является натуральным числом?
|
|
Сложность: 3+ Классы: 7,8,9
|
Найдите все целые числа x и y, удовлетворяющие уравнению x4 – 2y² = 1.
|
|
Сложность: 3+ Классы: 9,10,11
|
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?
Страница:
<< 136 137 138 139
140 141 142 >> [Всего задач: 1957]