Страница:
<< 113 114 115 116
117 118 119 >> [Всего задач: 1957]
|
|
Сложность: 3+ Классы: 10,11
|
Конём называется фигура, ход которой состоит в перемещении на n
клеток по горизонтали и на 1 по вертикали (или наоборот). Конь стоит на
некотором поле бесконечной шахматной доски. При каких n он может попасть на
любое заданное поле?
"Уголком" называется фигура, составленная из трёх квадратов со стороной
1 в виде буквы "Г".
Доказать, что прямоугольник размерами 1961×1963 нельзя разбить на уголки, а прямоугольник размерами 1963×1965 – можно.
Лист клетчатой бумаги размером 5×n заполнен карточками размером
1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно?
|
|
Сложность: 3+ Классы: 8,9,10
|
Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что
найдётся такой член прогрессии, в записи которого участвует цифра 9.
|
|
Сложность: 3+ Классы: 9,10
|
a, b, c – такие три числа, что abc > 0 и a + b + c > 0. Доказать, что an + bn + cn > 0 при любом натуральном n.
Страница:
<< 113 114 115 116
117 118 119 >> [Всего задач: 1957]