Страница:
<< 190 191 192 193
194 195 196 >> [Всего задач: 1957]
Какое наименьшее количество точек на плоскости надо взять, чтобы среди
попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?
В центре квадрата сидит заяц, а в каждом из четырёх углов по одному волку.
Может ли заяц выбежать из квадрата, если волки могут бегать только по
сторонам квадрата с максимальной скоростью в 1,4 раза большей, чем
максимальная скорость зайца?
На листе бумаги отмечены точки
A,
B,
C,
D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник
ABCD прямоугольником?
На листе бумаги отмечены точки
A,
B,
C,
D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник
ABCD квадратом?
|
|
Сложность: 4- Классы: 7,8,9
|
Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно
выбрать два числа, не являющихся взаимно простыми.
Страница:
<< 190 191 192 193
194 195 196 >> [Всего задач: 1957]