ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода). Докажите, что прямые, соединяющие вершины треугольника с точками
касания противоположных сторон с вписанной окружностью,
пересекаются в одной точке.
Точки A, B, C, D, E, F лежат на одной окружности.
Докажите, что точки пересечения прямых AB и DE, BC
и EF, CD и FA лежат на одной прямой (Паскаль).
а)
ctg а) Прямые l1 и l2 параллельны. Докажите, что
Sl1oSl2 = T2a, где
Ta — параллельный перенос,
переводящий l1 в l2, причем
a Докажите, что если α, β и γ - углы треугольника ABC. Докажите, что
Каждая из шести окружностей касается четырех
из оставшихся пяти (рис.). Докажите, что для любой
пары несоприкасающихся окружностей (из этих шести) их
радиусы и расстояние между центрами связаны соотношением
d2 = r12 + r22±6r1r2 (к плюск — если окружности не
лежат одна внутри другой, к минуск — в противном случае).
Доказать, что На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
а)
cos2
cos2
Докажите тождество:
Пусть α, β и γ - углы треугольника ABC. Докажите, что
Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 69]
Отрезок MN, параллельный стороне CD
четырехугольника ABCD, делит его площадь пополам (точки M
и N лежат на сторонах BC и AD). Длины отрезков,
проведенных из точек A и B параллельно CD до пересечения
с прямыми BC и AD, равны a и b. Докажите,
что
MN2 = (ab + c2)/2, где c = CD.
Каждая из трех прямых делит площадь фигуры
пополам. Докажите, что часть фигуры, заключенная внутри
треугольника, образованного этими прямыми, имеет площадь,
не превосходящую 1/4 площади всей фигуры.
Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем 1 +
Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.
а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 69]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке