ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что если угол A треугольника ABC равен 120o, то центр описанной окружности и ортоцентр симметричны относительно биссектрисы внешнего угла A. б) В треугольнике ABC угол A равен 60o; O — центр описанной окружности, H — ортоцентр, I — центр вписанной окружности, а Ia — центр вневписанной окружности, касающейся стороны BC. Докажите, что IO = IH и IaO = IaH. Решение |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 176]
б) В треугольнике ABC угол A равен 60o; O — центр описанной окружности, H — ортоцентр, I — центр вписанной окружности, а Ia — центр вневписанной окружности, касающейся стороны BC. Докажите, что IO = IH и IaO = IaH.
а) Пусть M и N — точки пересечения серединных перпендикуляров к отрезкам BH и CH со сторонами AB и AC соответственно. Докажите, что точки M, N и H лежат на одной прямой. б) Докажите, что на той же прямой лежит центр O описанной окружности.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 176] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|