ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
На продолжениях медиан AK, BL и CM треугольника ABC взяты
точки P, Q и R, причём
KP =
Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
Даны две непересекающиеся окружности радиусов R и 2R. К ним
проведены общие касательные, которые пересекаются в точке A
отрезка, соединяющего центры окружностей. Расстояние между
центрами окружностей равно
2R
Докажите, что число состоящее из 243 единиц делится на 243.
Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
Диагонали выпуклого четырёхугольника равны c и d и пересекаются под углом 45o. Найдите отрезки, соединяющие середины противоположных сторон четырёхугольника.
Найдите наибольшее значение функции y = ln (x+4)5-5x на отрезке [-3,5;0] . Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что ∠KON + ∠MOL = 180°. На сторонах произвольного треугольника ABC во внешнюю сторону построены равносторонние треугольники ABC1, A1BC и AB1C.
Найдите геометрическое место точек, из которых проведены касательные к данной окружности, равные заданному отрезку.
Докажите, что 1n + 2n + ... + (n – 1)n делится на n при нечётном n.
Радиус окружности, описанной около прямоугольного треугольника, относится к радиусу вписанной в него окружности как 5:2. Найдите площадь треугольника, если один из его катетов равен a.
На сторонах AB, BC, CD и DA произвольного четырёхугольника ABCD взяты точки K, L, M и N соответственно. Обозначим через S1, S2, S3 и S4 площади треугольников AKN, BKL, CLM и DMN соответственно. Докажите, что Докажите, что уравнения
Даны отрезки a и b. С помощью циркуля и линейки постройте отрезок
Сформулируйте теорему, обратную теореме Пифагора. Верна ли она?
В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче? Сколько последовательностей {a1, a2, ..., a2n}, состоящих из единиц и минус единиц, обладают тем свойством, что a1 + a2 + ... + a2n = 0, а все частичные суммы a1, a1 + a2, ..., a1 + a2 + ... + a2n неотрицательны? В треугольнике ABC серединный перпендикуляр к BC пересекает прямые AB и AC в точках AB и AC соответственно. Обозначим через Oa центр описанной окружности треугольника AABAC. Аналогично определим Ob и Oc. Докажите, что описанная окружность треугольника OaObOc касается описанной окружности исходного треугольника. Каждая из девяти прямых разбивает квадрат на
два четырехугольника, площади которых относятся как 2 : 3.
Докажите, что по крайней мере три из этих девяти прямых
проходят через одну точку.
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
В квадрате со стороной 1 находится 51 точка.
Докажите, что какие-то три из них можно накрыть кругом
радиуса 1/7.
Два неравных картонных диска разделены на 1965 равных секторов. На каждом из
дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший
диск наложен на больший, так что их центры совпадают, а секторы целиком лежат
один против другого. Меньший диск поворачивают на всевозможные углы, кратные
Каждая из девяти прямых разбивает квадрат на
два четырехугольника, площади которых относятся как 2 : 3.
Докажите, что по крайней мере три из этих девяти прямых
проходят через одну точку.
В парке растет 10000 деревьев, посаженных квадратно-гнездовым
способом (100 рядов по 100 деревьев). Какое наибольшее число деревьев
можно срубить, чтобы выполнялось следующее условие: если встать на любой
пень, то не будет видно ни одного другого пня? (Деревья можно
считать достаточно тонкими.)
Какое наименьшее число точек достаточно отметить
внутри выпуклого n-угольника, чтобы внутри любого треугольника
с вершинами в вершинах n-угольника содержалась
хотя бы одна отмеченная точка?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке