Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Докажите, что геометрическая прогрессия {an} = bx0n удовлетворяет соотношению (11.2 ) тогда и только тогда, когда x0 -- корень характеристического уравнения (11.3 ) последовательности {an}.

Вниз   Решение


На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.

ВверхВниз   Решение


Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.

ВверхВниз   Решение


Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.

ВверхВниз   Решение


Пусть  x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите, что  9/20 < x1/x < 5/4.

ВверхВниз   Решение


Две высоты треугольника больше 1. Докажите, что его площадь больше 1/2.

ВверхВниз   Решение


Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


В треугольнике ABC проведены медиана CM и высота CH. Прямые, проведенные через произвольную точку P плоскости перпендикулярно CA, CM и CB, пересекают прямую CH в точках A1, M1 и B1. Докажите, что A1M1 = B1M1.

ВверхВниз   Решение


Точка M лежит на диаметре AB окружности. Хорда CD окружности проходит через точку M и пересекает прямую AB под углом в 45°.
Докажите, что величина  CM² + DM²  не зависит от выбора точки M.

ВверхВниз   Решение


В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.

ВверхВниз   Решение


Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.

ВверхВниз   Решение


Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях?

ВверхВниз   Решение


Докажите, что существует проективное отображение, которое три данные точки одной прямой переводит в три данные точки другой прямой.


ВверхВниз   Решение


Хорды AB и CD пересекаются в точке M, лежащей внутри круга. Докажите, что треугольники AMD и CMB подобны.

ВверхВниз   Решение


Касательная и секущая, проведённые из одной точки к окружности, взаимно перпендикулярны. Касательная равна 12, а внутренняя часть секущей равна 10. Найдите радиус окружности.

ВверхВниз   Решение


Между зажимами A и B включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы A и B, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.)

ВверхВниз   Решение


Даны прямая l, окружность и точки M, N, лежащие на окружности и не лежащие на прямой l. Рассмотрим отображение P прямой l на себя, являющееся композицией проектирования прямой l на данную окружность из точки M и проектирования окружности на прямую l из точки N. (Если точка X лежит на прямой l, то P(X) есть пересечение прямой NY с прямой l, где Y — отличная от M точка пересечения прямой MX с данной окружностью.) Докажите, что преобразование P проективно.

ВверхВниз   Решение


Даны прямая l, окружность и точка M, лежащая на окружности и не лежащая на прямой l. Пусть PM — проектирование прямой l на данную окружность из точки M (точка X прямой отображается в отличную от M точку пересечения прямой XM с окружностью), R — движение плоскости, сохраняющее данную окружность (т. е. поворот плоскости вокруг центра окружности или симметрия относительно диаметра). Докажите, что композиция PM-1oRoPM является проективным преобразованием.

ВверхВниз   Решение


На хорде AB окружности S с центром O взята точка C. Описанная окружность треугольника AOC пересекает окружность S в точке D.
Докажите, что  BC = CD.

ВверхВниз   Решение


В равнобедренном треугольнике высота, проведённая к основанию, делится точкой пересечения высот пополам. Найдите углы этого треугольника.

ВверхВниз   Решение


Докажите, что если (ABCX) = (ABCY), то X = Y (все точки попарно различны, кроме, быть может, точек X и Y, и лежат на одной прямой).

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]      



Задача 58409  (#30.001)

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что существует проективное отображение, которое три данные точки одной прямой переводит в три данные точки другой прямой.


Прислать комментарий     Решение

Задача 58410  (#30.002)

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.
Прислать комментарий     Решение


Задача 58411  (#30.003)

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что если (ABCX) = (ABCY), то X = Y (все точки попарно различны, кроме, быть может, точек X и Y, и лежат на одной прямой).
Прислать комментарий     Решение


Задача 58412  (#30.004)

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что проективное преобразование прямой однозначно определяется образами трех произвольных точек.
Прислать комментарий     Решение


Задача 58413  (#30.005)

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что нетождественное проективное преобразование прямой имеет не более двух неподвижных точек.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .