ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Определите, на какую наибольшую натуральную степень числа 2007 делится 2007! Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что OM = KN. Около треугольника ABC описана окружность с центром O. Вторая окружность, проходящая через точки A, B, O, касается прямой AC в точке A. Вписанная в треугольник ABC окружность касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что AC=1 , а углы MKN и ABC равны соответственно 45o и 30o . Найдите радиус окружности.
Вписанная в треугольник ABC окружность радиуса 1 касается его
сторон AB , BC и AC соответственно в точках K , M и N .
Известно, что Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом? В прямоугольнике АВСD точка Р – середина стороны АВ, а точка Q – основание перпендикуляра, опушенного из вершины С на PD. Вычислите суммы:
б) На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19 (6·1 + 13 = 19). Какое число можно будет прочитать на доске через час? Дан треугольник ABC . На его сторонах AB и BC построены внешним образом квадраты ABMN и BCPQ . Докажите, что центры этих квадратов и середины отрезков MQ и AC образуют квадрат.
В треугольнике ABC известно, что AB = BC,
На складах двух магазинов хранится пшено: на первом складе на 16 тонн больше, чем на втором. Каждую ночь ровно в полночь владелец каждого магазина ворует у своего конкурента четверть имеющегося на его складе пшена и перетаскивает на свой склад. Через 10 ночей воришек поймали. На каком складе в момент их поимки было больше пшена и на сколько? Даны две точки и окружность. С помощью циркуля и линейки проведите через данные точки две секущие, хорды которых внутри данной окружности были бы равны и пересекались бы под данным углом α . С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат соответственно на трёх данных концентрических окружностях. На шахматной доске 8×8 расставлено наибольшее возможное число слонов так, что никакие два слона не угрожают друг другу. На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что AF < BD. |
Страница: << 1 2 3 >> [Всего задач: 12]
В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что BK = MN.
На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что AF < BD.
O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что SAOK = SAOB + SDOK.
В треугольнике ABC M – середина стороны BC, P – точка пересечения касательных в точках B и C к описанной окружности, N – середина отрезка MP. Отрезок AN пересекает описанную окружность в точке Q. Докажите, что ∠PMQ = ∠MAQ.
В остроугольном неравнобедренном треугольнике ABC проведена высота AH. На сторонах AC и AB отмечены точки B1 и C1 соответственно, так, что HA – биссектриса угла B1HC1 и четырёхугольник BC1B1C – вписанный. Докажите, что B1 и C1 – основания высот треугольника ABC.
Страница: << 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке