Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На доске размером 8×8 двое по очереди закрашивают клетки так, чтобы не появлялось закрашенных уголков из трёх клеток. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре?

Вниз   Решение


Теннисист для тренировки играет каждый день хотя бы одну партию; при этом, чтобы не перетрудиться, он играет не более 12 партий в неделю.
Докажите, что можно найти несколько таких подряд идущих дней, в течение которых теннисист сыграл ровно двадцать партий.

ВверхВниз   Решение


Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?

ВверхВниз   Решение


По кругу написано семь натуральных чисел. Докажите, что найдутся два соседних числа, сумма которых чётна.

ВверхВниз   Решение


Квадратный трёхчлен  x² + bx + c  имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Могло ли оказаться, что оба корня трёхчлена также увеличились на 1?

Вверх   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1982]      



Задача 65671

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Сумма трёх положительных чисел равна их произведению. Докажите, что хотя бы два из них больше единицы.

Прислать комментарий     Решение

Задача 65683

Темы:   [ Обратные тригонометрические функции ]
[ Неравенство Коши ]
Сложность: 3
Классы: 9,10,11

Существует ли такое значение x, что выполняется равенство  arcsin2x + arccos2x = 1?

Прислать комментарий     Решение

Задача 66071

Тема:   [ Ребусы ]
Сложность: 3
Классы: 7,8,9

Замените в выражении  ABC = DEF  буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз.
(ABC – двузначное число из цифр A и B, возведённое в степень C. Достаточно привести один способ замены.)

Прислать комментарий     Решение

Задача 66077

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8,9

Найдите наибольшее натуральное число, все цифры в десятичной записи которого различны и которое уменьшается в 5 раз, если зачеркнуть первую цифру.

Прислать комментарий     Решение

Задача 66083

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Квадратный трёхчлен  x² + bx + c  имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Могло ли оказаться, что оба корня трёхчлена также увеличились на 1?

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .