Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Каждый отрезок покрашен в один из K цветов. Петя хочет покрасить каждую точку в один из этих цветов так, чтобы не нашлось двух точек и отрезка между ними, окрашенных в один цвет. Всегда ли Пете это удастся, если
  a)  K = 7;   б)  K = 10?

Вниз   Решение


Петя и Вася играют в такую игру. Сначала на столе лежит 11 кучек по 10 камней. Игроки ходят по очереди, начинает Петя. Каждым ходом игрок берёт 1, 2 или 3 камня, но Петя каждый раз выбирает все камни из любой одной кучки, а Вася всегда выбирает все камни из разных кучек (если их больше одного). Проигрывает тот, кто не может сделать ход. Кто из игроков может обеспечить себе победу, как бы ни играл его соперник?

ВверхВниз   Решение


Автор: Кноп К.А.

Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?

ВверхВниз   Решение


Внутри параллелограмма $ABCD$ взята такая точка $P$, что  ∠$PDA$ = ∠$PBA$.  Пусть Ω – вневписанная окружность треугольника $PAB$, лежащая против вершины $A$, а ω – вписанная окружность треугольника $PCD$. Докажите, что одна из общих касательных к Ω и ω параллельна $AD$.

ВверхВниз   Решение


У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?

ВверхВниз   Решение


а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
б) Докажите, что в таблице 2n×2n можно расставить  3n + 1  звёздочку так, что при вычеркивании любых n строк и любых n столбцов остаётся невычеркнутой хотя бы одна звёздочка.

ВверхВниз   Решение


Автор: Фомин Д.

Круг разбит на n секторов, в некоторых секторах стоят фишки – всего фишек  n + 1.  Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.

ВверхВниз   Решение


У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если а) N = 201; б) N = 400?

ВверхВниз   Решение


Дан многочлен P(x) с действительными коэффициентами. Бесконечная последовательность различных натуральных чисел a1, a2, a3, ... такова, что
P(a1) = 0,  P(a2) = a1P(a3) = a2,  и т.д. Какую степень может иметь P(x)?

ВверхВниз   Решение


Пусть n и b – натуральные числа. Через  V(n, b)  обозначим число разложений n на сомножители, каждый из которых больше b (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12,  так что  V(36, 2) = 5).  Докажите, что  V(n, b) < n/b.

ВверхВниз   Решение


На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



Задача 67081

Темы:   [ Процессы и операции ]
[ Индукция (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Автор: Шень А.Х.

На доске написана буква А. Разрешается в любом порядке и количестве:
  а) приписывать А слева;
  б) приписывать Б справа;
  в) одновременно приписывать Б слева и А справа.
Например, БААБ так получить можно  (A → БAA → БААБ),  а АББА – нельзя. Докажите, что при любом натуральном $n$ половину слов длины $n$ получить можно, а другую половину – нельзя.

Прислать комментарий     Решение

Задача 67023

Темы:   [ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Простые числа и их свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

Прислать комментарий     Решение

Задача 67054

Темы:   [ Четность и нечетность ]
[ Теория игр (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?

Прислать комментарий     Решение

Задача 67085

Темы:   [ Максимальное/минимальное расстояние ]
[ Стереометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Звездолёт находится в полупространстве на расстоянии $a$ от его границы. Экипаж знает об этом, но не представляет, в каком направлении двигаться, чтобы достигнуть граничной плоскости. Звездолёт может лететь в пространстве по любой траектории, измеряя длину пройденного пути, и имеет датчик, подающий сигнал, когда граница достигнута. Может ли звездолёт гарантированно достигнуть границы, преодолев путь длиной

а) не более $14а$;

б) не более $13а$?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .