ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две окружности пересекаются в точках A и B. Через точку K первой окружности проводятся прямые KA и KB, вторично пересекающие другую окружность в точках P и Q соответственно. Докажите, что хорда PQ окружности перпендикулярна диаметру KM первой окружности. На поверхности куба найти точки, из которых диагональ видна под наименьшим углом. Доказать, что из остальных точек поверхности куба диагональ видна под большим углом, чем из найденных. |
Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 1982]
У входа на рынок есть двухчашечные весы без гирек, которыми каждый может воспользоваться по 2 раза в день. У торговца Александра есть 3 неотличимые внешне монеты весом 9, 10 и 11 грамм. — Как жаль, что я не могу за 2 взвешивания разобраться, какая из моих монет сколько весит! — Да! — поддакнул его сосед Борис. — У меня совершенно та же ситуация — тоже 3 неотличимые на вид монеты весом 9, 10 и 11 грамм! Докажите, что если они объединят усилия, то за отведённые им 4 взвешивания определят веса всех шести монет.
В декартовой системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график показательной функции $y=3^x$. Затем ось $y$ и все отметки на оси $x$ стёрли. Остались лишь график функции и ось $x$ без масштаба и отметки 0. Каким образом с помощью циркуля и линейки можно восстановить ось $y$?
Петя загадал положительную несократимую дробь $x = \frac{m}{n}$. За один ход Вася называет положительную несократимую дробь $y$, не превосходящую 1, и Петя в ответ сообщает Васе числитель несократимой дроби, равной сумме $x+y$. Как Васе за два хода гарантированно узнать $x$?
Имеется кучка из 100 камней. Двое играют в следующую игру. Первый игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл соперник?
В треугольнике $ABC$ на стороне $AB$ отмечена точка $D$ (отличная от $A$ и $B$) и проведена медиана $AM$. Оказалось, что $AM = \frac{1}{2}CD$. Обязательно ли треугольник $ABC$ тупоугольный?
Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 1982]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке