Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Найдутся ли натуральные числа x, y и z, удовлетворяющие условию  28x + 30y + 31z = 365?

Вниз   Решение


Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).


ВверхВниз   Решение


Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.

ВверхВниз   Решение


а) Олег перемножил какие-то семь подряд идущих чисел. Верно ли, что у него получилось число, оканчивающееся на ровно один ноль?
б) Саша решил перемножить первые 57 чисел:  1·2·...·56·57.  У него получилось число, оканчивающееся на 12 нулей. Правильно ли он всё вычислил?

ВверхВниз   Решение


Разложить на целые рациональные множители выражение  a10 + a5 + 1.

Вверх   Решение

Задачи

Страница: << 202 203 204 205 206 207 208 >> [Всего задач: 1982]      



Задача 66093

Темы:   [ Куб ]
[ Теорема Пифагора (прямая и обратная) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 10,11

На гранях единичного куба отметили восемь точек, которые служат вершинами меньшего куба.
Найдите все значения, которые может принимать длина ребра этого куба.

Прислать комментарий     Решение

Задача 66110

Темы:   [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
  а) слева;  б) в центре;  в) справа?

(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)

Прислать комментарий     Решение

Задача 66112

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Автор: Обухов Б.

В выпуклом шестиугольнике ABCDEF все стороны равны, а также  AD = BE = CF.  Докажите, что в этот шестиугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 66120

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Композиции симметрий ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC c углом A, равным 45°, проведена медиана AM. Прямая b симметрична прямой AM относительно высоты BB1, а прямая c симметрична прямой AM относительно высоты CC1. Прямые b и c пересеклись в точке X. Докажите, что  AX = BC.

Прислать комментарий     Решение

Задача 66532

Темы:   [ Симметричная стратегия ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.
Прислать комментарий     Решение


Страница: << 202 203 204 205 206 207 208 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .