ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.

   Решение

Задачи

Страница: << 203 204 205 206 207 208 209 >> [Всего задач: 1957]      



Задача 76547

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

Из двухсот чисел: 1, 2, 3, 4, 5, 6, 7, ..., 199, 200 произвольно выбрали сто одно число.
Доказать, что среди выбранных чисел найдутся два, из которых одно делится на другое.

Прислать комментарий     Решение

Задача 77868

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичная система счисления ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 8,9

Сколько цифр имеет число 2100?

Прислать комментарий     Решение

Задача 77876

Тема:   [ Уравнения в целых числах ]
Сложность: 4-
Классы: 10,11

Найти все рациональные положительные решения уравнения  xy = yx  (x ≠ y).

Прислать комментарий     Решение

Задача 77885

Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Найти такие целые числа x, y, z и t, что  x² + y² + z² + t² = 2xyzt.

Прислать комментарий     Решение

Задача 77894

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.

Прислать комментарий     Решение

Страница: << 203 204 205 206 207 208 209 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .