ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны уравнения  ax² + bx + c = 0   (1)    и – ax² + bx + c   (2).     Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения  ½ ax² + bx + c,  что либо  x1x3x2,  либо  x1x3x2.

   Решение

Задачи

Страница: << 205 206 207 208 209 210 211 >> [Всего задач: 1957]      



Задача 77989

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 9,10,11

Даны уравнения  ax² + bx + c = 0   (1)    и – ax² + bx + c   (2).     Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения  ½ ax² + bx + c,  что либо  x1x3x2,  либо  x1x3x2.

Прислать комментарий     Решение

Задача 77993

Темы:   [ Рекуррентные соотношения ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 11

Пусть  x0 = 109xn = .  Доказать, что  0 < x36 < 10–9.

Прислать комментарий     Решение

Задача 77994

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10

На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может попасть за 2n ходов.

Прислать комментарий     Решение

Задача 78011

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Системы точек и отрезков ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9

План города представляет собой плоскость, разбитую на одинаковые правильные треугольники. Стороны треугольников – шоссейные дороги, а вершины треугольников – перекрестки. Из точек A и B, расположенных на одной дороге (стороне треугольника), одновременно в одном направлении с одинаковыми скоростями выезжают две машины. Доехав до любого перекрёстка, каждая машина может или продолжить свое движение в том же направлении, или же повернуть на 120° вправо или влево. Могут ли машины встретиться?

Прислать комментарий     Решение

Задача 78040

Темы:   [ Аффинные преобразования и их свойства ]
[ Аналитический метод в геометрии ]
Сложность: 4-
Классы: 11

На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится.
Прислать комментарий     Решение


Страница: << 205 206 207 208 209 210 211 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .