ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

   Решение

Задачи

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 1984]      



Задача 78476

Темы:   [ Числовые таблицы и их свойства ]
[ Замощения костями домино и плитками ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Лист клетчатой бумаги размером 5×n заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно?

Прислать комментарий     Решение

Задача 78477

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.
Прислать комментарий     Решение


Задача 78483

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10

a, b, c – такие три числа, что  abc > 0  и  a + b + c > 0.  Доказать, что  an + bn + cn > 0  при любом натуральном n.

Прислать комментарий     Решение

Задача 78486

Темы:   [ Четность и нечетность ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 11

Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену.

Прислать комментарий     Решение

Задача 78491

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

Прислать комментарий     Решение

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 1984]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .