Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В четырёхугольнике ABCD  AB = ВС = m,  ∠АВС = ∠АDС = 120°.  Найдите BD.

Вниз   Решение


Даны окружность S, точка A на ней и прямая l. Постройте окружность, касающуюся данной окружности в точке A и данной прямой.

ВверхВниз   Решение


Пусть S — окружность Аполлония для точек A и B, причем точка A лежит вне окружности S. Из точки A проведены касательные AP и AQ к окружности S. Докажите, что B — середина отрезка PQ.

ВверхВниз   Решение


Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны.
Докажите, что  1/R1 + 1/R2 + 1/R31/r,  где r – радиус вписанной окружности этого треугольника.

ВверхВниз   Решение


Постройте окружность, равноудалённую от четырёх данных точек.

ВверхВниз   Решение


Через точки A и D, лежащие на окружности, проведены касательные, пересекающиеся в точке S. На дуге AD взяты точки B и C. Прямые AC и BD пересекаются в точке PAB и CD — в точке Q. Докажите, что прямая PQ проходит через точку S.

ВверхВниз   Решение


На стороне BC треугольника ABC взяты точки K1 и K2. Докажите, что общие внешние касательные к вписанным окружностям треугольников ABK1 и ACK2 общие внешние касательные к вписанным окружностям треугольников ABK2 и ACK1 пересекаются в одной точке.

ВверхВниз   Решение


В некотором царстве, территория которого имеет форму квадрата со стороной 2 км, царь решает созвать всех жителей к 7 ч вечера к себе во дворец на бал. Для этого он в полдень посылает с поручением гонца, который может передать любое указание любому жителю, который в свою очередь может передать любое указание любому другому жителю и т.д. Каждый житель до поступления указания находится в известном месте (у себя дома) и может передвигаться со скоростью 3 км/ч в любом направлении (по прямой). Доказать, что царь может организовать оповещение так, чтобы все жители успели прийти к началу бала.

ВверхВниз   Решение


Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру  a ≠ 0  (все цифры его не меньше a) и при этом получится  (xa)².

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1957]      



Задача 78209

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 2+
Классы: 8,9

Доказать, что число, состоящее из 300 единиц и некоторого количества нулей, не является точным квадратом.

Прислать комментарий     Решение

Задача 78290

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9,10

Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.

Прислать комментарий     Решение

Задача 78470

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 7,8

a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Прислать комментарий     Решение

Задача 78698

Темы:   [ Десятичная система счисления ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 2+
Классы: 10

Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру  a ≠ 0  (все цифры его не меньше a) и при этом получится  (xa)².

Прислать комментарий     Решение

Задача 78726

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 2+
Классы: 7,8

На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .