Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.

Вниз   Решение


На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC  (AM = AN).
Докажите, что точки M и N симметричны относительно биссектрисы угла BAC.

ВверхВниз   Решение


Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.

ВверхВниз   Решение


В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

ВверхВниз   Решение


Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Докажите, что прямые AB и B1C параллельны.

ВверхВниз   Решение


К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

ВверхВниз   Решение


Расстояние от точки M до центра O окружности равно диаметру этой окружности. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.

ВверхВниз   Решение


На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?

ВверхВниз   Решение


Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.

ВверхВниз   Решение


Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0?

Вверх   Решение

Задачи

Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 1957]      



Задача 79289

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3+
Классы: 9,10

Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.
Прислать комментарий     Решение


Задача 79297

Темы:   [ Разные задачи на разрезания ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 8,9,10

На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?
Прислать комментарий     Решение


Задача 79312

Темы:   [ Неравенства с площадями ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Пусть M'K'H' — треугольник с вершинами в точках пересечения трёх проведённых отрезков. Может ли площадь полученного треугольника быть больше 0,499 площади треугольника ABC?
Прислать комментарий     Решение


Задача 79318

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8

Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?
Прислать комментарий     Решение


Задача 79329

Темы:   [ Многогранники и пространственные многоугольники ]
[ Векторы (прочее) ]
[ Проектирование помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0?
Прислать комментарий     Решение


Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .