ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм. В квадрате со стороной 1 проведено конечное число отрезков,
параллельных его сторонам, причем эти отрезки могут пересекать
друг друга. Сумма длин отрезков равна 18. Докажите, что площадь
одной из частей, на которые разбит квадрат, не меньше 0,01.
Натуральные числа p и q взаимно просты. Отрезок [0, 1] разбит на p + q одинаковых отрезков. Докажите, что следующие свойства выпуклого многоугольника F
эквивалентны: 1) F имеет центр симметрии;
2) F можно разрезать на параллелограммы.
Разрежьте произвольный треугольник на части, из которых можно составить треугольник, симметричный исходному относительно некоторой прямой (части переворачивать нельзя). Правильный восьмиугольник со стороной 1 разрезан
на параллелограммы. Докажите, что среди них есть по
крайней мере два прямоугольника, причем сумма площадей
всех прямоугольников равна 2.
а) Докажите, что любой неравносторонний треугольник можно
разрезать на неравные треугольники, подобные исходному.
Существует ли треугольник, который можно разрезать: а) на 3 равных треугольника, подобных исходному?; б)
на 5 треугольников, подобных исходному (не обязательно равных)?
Докажите, что если в наборе целых чисел a1, ..., an хотя бы одно отлично от 0, то они имеют наибольший общий делитель. По кругу расставлены 2005 натуральных чисел. Школьник едет на олимпиаду на метро, платит рубль и получает сдачу. Доказать, что если он обратно поедет на трамвае, то он сможет уплатить за проезд без сдачи. (Проезд в метро стоил 50 коп., в трамвае – 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.) Из всех параллелограммов данной площади найти тот, у которого наибольшая диагональ минимальна. Доказать, что 11551958 + 341958 ≠ n², где n – целое. Точка G — центр шара, вписанного в правильный тетраэдр ABCD. Прямая OG, соединяющая G с точкой O, лежащей внутри тетраэдра, пересекает плоскости граней в точках A', B', C', D'. Доказать, что Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей. В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наименьший угол треугольника имел наибольшую величину? Докажите, что ни для каких чисел x, y, t не могут одновременно выполняться три неравенства: |x| < |y − t|, |y| < |t − x|, |t| < |x − y|. |
Страница: 1 [Всего задач: 5]
На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник ромбом.
Докажите, что ни для каких чисел x, y, t не могут одновременно выполняться три неравенства: |x| < |y − t|, |y| < |t − x|, |t| < |x − y|.
Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма времён, необходимых каждому из гномов на путь от своего дома до этого места (по прямой), была наименьшей?
Произведение некоторых 1986 натуральных чисел имеет ровно 1985 различных простых делителей.
Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода).
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке