ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Каждый отрезок покрашен в один из K цветов. Петя хочет покрасить каждую точку в один из этих цветов так, чтобы не нашлось двух точек и отрезка между ними, окрашенных в один цвет. Всегда ли Пете это удастся, если Петя и Вася играют в такую игру. Сначала на столе лежит 11 кучек по 10 камней. Игроки ходят по очереди, начинает Петя. Каждым ходом игрок берёт 1, 2 или 3 камня, но Петя каждый раз выбирает все камни из любой одной кучки, а Вася всегда выбирает все камни из разных кучек (если их больше одного). Проигрывает тот, кто не может сделать ход. Кто из игроков может обеспечить себе победу, как бы ни играл его соперник? Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)? Внутри параллелограмма $ABCD$ взята такая точка $P$, что ∠$PDA$ = ∠$PBA$. Пусть Ω – вневписанная окружность треугольника $PAB$, лежащая против вершины $A$, а ω – вписанная окружность треугольника $PCD$. Докажите, что одна из общих касательных к Ω и ω параллельна $AD$. У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов? а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты. Круг разбит на n секторов, в некоторых секторах стоят фишки – всего фишек n + 1. Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято. У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если а) N = 201; б) N = 400? Дан многочлен P(x) с действительными коэффициентами. Бесконечная
последовательность различных натуральных чисел a1, a2, a3, ... такова, что Пусть n и b – натуральные числа. Через V(n, b) обозначим число разложений n на сомножители, каждый из которых больше b (например: На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон? На доске написана буква А. Разрешается в любом порядке и количестве: Дана функция Икосаэдр и додекаэдр вписаны в одну и ту же сферу. Докажите, что тогда они описаны вокруг одной и той же сферы. Все натуральные числа выписали в ряд в некотором порядке (каждое число по одному разу). Обязательно ли найдутся несколько (больше одного) чисел, выписанных подряд (начиная с какого-то места), сумма которых будет простым числом? В ряд слева направо стоят $N$ коробок, занумерованных подряд числами $1$, $2, \ldots, N$. В некоторые коробки, стоящие подряд, положат по шарику, оставив остальные пустыми. Инструкция состоит из последовательно выполняемых команд вида «поменять местами содержимое коробок № $i$ и № $j$», где $i$ и $j$ – числа. Для каждого ли $N$ существует инструкция, в которой не больше $100N$ команд, со свойством: для любой начальной раскладки указанного вида можно будет, вычеркнув из инструкции некоторые команды, получить инструкцию, после выполнения которой все коробки с шариками будут левее коробок без шариков? На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами. Докажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек. Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.) а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться? б) Тот же вопрос для решётки 7×7 (всего 64 узла). Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали. Ширина реки один километр. Это по определению означает, что от любой точки
каждого берега можно доплыть до противоположного берега, проплыв не больше
километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до
любого из берегов было бы не больше: |
Страница: << 2 3 4 5 6 7 8 [Всего задач: 40]
Дан угол с вершиной O и внутри него точка A. Рассмотрим такие точки M, N на разных сторонах данного угла, что углы MAO и OAN равны.
В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.
В ботаническом справочнике каждое растение характеризуется 100 признаками
(каждый признак либо присутствует, либо отсутствует). Растения считаются
непохожими, если они различаются не менее, чем по 51 признаку.
Число рёбер многогранника равно 100.
Ширина реки один километр. Это по определению означает, что от любой точки
каждого берега можно доплыть до противоположного берега, проплыв не больше
километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до
любого из берегов было бы не больше:
Страница: << 2 3 4 5 6 7 8 [Всего задач: 40]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке