Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Числа a0, a1,..., an,... определены следующим образом:

a0 = 2,    a1 = 3,        an + 1 = 3an - 2an - 1        (n $\displaystyle \geqslant$ 2).

Найдите и докажите формулу для этих чисел.

Вниз   Решение


Найдите все натуральные числа k, для которых найдутся такие натуральные числа m и n, что  m(m + k) = n(n + 1).

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Их общая касательная (та, которая ближе к точке B) касается окружностей в точках E и F. Прямая AB пересекает прямую EF в точке M. На продолжении AM за точку M выбрана точка K так, что  KM = MA.  Прямая KE вторично пересекает окружность, содержащую точку E, в точке C. Прямая KF вторично пересекает окружность, содержащую точку F, в точке D. Докажите, что точки C, D и A лежат на одной прямой.

ВверхВниз   Решение


N точек плоскости, никакие три из которых не лежат на одной прямой, попарно соединили отрезками (каждую с каждой). Часть отрезков покрасили красным, остальные – синим. Все красные отрезки образовали замкнутую несамопересекающуюся ломаную, и все синие отрезки – тоже. Найдите все N, при которых это могло получиться.

ВверхВниз   Решение


К натуральному числу  a > 1  приписали это же число и получили число b, кратное a². Найдите все возможные значения числа  b/a².

ВверхВниз   Решение


Автор: Назаров Ф.

Несколько человек делят наследство. Наследник считается бедным, если ему досталось меньше 99 рублей, богатым, – если ему досталось больше 10000 рублей. Величина наследства и число людей таковы, что при любом способе дележа у богатых окажется не меньше денег, чем у бедных. Докажите, что при любом способе дележа у богатых не меньше чем в 100 раз больше денег, чем у бедных.

ВверхВниз   Решение


Дана треугольная пирамида ABCD. В ней R – радиус описанной сферы, r – радиус вписанной сферы, a – длина наибольшего ребра, h – длина наименьшей высоты (на какую-то грань). Докажите, что  R/r > a/h.

ВверхВниз   Решение


Внутри некоторого тетраэдра взяли произвольную точку X. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему X с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.

ВверхВниз   Решение


Автор: Шень А.Х.

а) В классе была дана контрольная. Известно, что по крайней мере ⅔ задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере ⅔ школьников. Известно также, что по крайней мере ⅔ школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере ⅔ задач контрольной. Могло ли такое быть?

Изменится ли ответ, если везде в условии заменить ⅔ на   б) ¾;   в) 7/10?

ВверхВниз   Решение


Выпуклый N-угольник разбит диагоналями на треугольники (при этом диагонали не пересекаются внутри многоугольника). Треугольники раскрашены в чёрный и белый цвета так, что каждые два треугольника с общей стороной раскрашены в разные цвета. Для каждого N найдите максимум разности количества белых и количества чёрных треугольников.

ВверхВниз   Решение


Дан некоторый угол и точка A внутри него. Можно ли провести через точку A три прямые (не проходящие через вершину угла) так, чтобы на каждой из сторон угла одна из точек пересечения этих прямых со стороной лежала посередине между двумя другими точками пересечения прямых с этой же стороной?

ВверхВниз   Решение


Из чисел от 1 до 2n выбрано  n + 1  число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое.

ВверхВниз   Решение


Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



Задача 98613

Тема:   [ Разные задачи на разрезания ]
Сложность: 4-
Классы: 9,10,11

Дан картонный прямоугольник со сторонами a см и b см, где  b/2 < a < b.
Докажите, что его можно разрезать на три куска, из которых складывается квадрат.

Прислать комментарий     Решение

Задача 98616

Темы:   [ Турниры и турнирные таблицы ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9

В однокруговом турнире участвовали 15 команд.
  а) Докажите, что хотя бы в одной игре встретились команды, которые перед этой игрой участвовали в сумме в нечётном числе игр этого турнира.
  б) Могла ли такая игра быть единственной?

Прислать комментарий     Решение

Задача 98618

Темы:   [ Разрезания (прочее) ]
[ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 8,9

Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей?

Прислать комментарий     Решение

Задача 98619

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Касающиеся окружности ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4-
Классы: 8,9

Трапеция с основаниями AD и BC описана вокруг окружности, E – точка пересечения её диагоналей. Докажите, что угол AED не может быть острым.

Прислать комментарий     Решение


Задача 108121

Темы:   [ Вспомогательная окружность ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанный угол, опирающийся на диаметр ]
[ Четыре точки, лежащие на одной окружности ]
[ Две касательные, проведенные из одной точки ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 9,10,11

В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
EMK = 90°.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .