ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 86]      



Задача 56663  (#03.007)

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 5
Классы: 7,8

Дан параллелограмм ABCD. Вневписанная окружность треугольника ABD касается продолжений сторон AD и AB в точках M и N. Докажите, что точки пересечения отрезка MN с BC и CD лежат на вписанной окружности треугольника BCD.
Прислать комментарий     Решение


Задача 56664  (#03.008)

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 5
Классы: 7,8

На каждой стороне четырехугольника ABCD взято по две точки, и они соединены так, как показано на рис. Докажите, что если все пять заштрихованных четырехугольников описанные, то четырехугольник ABCD тоже описанный.


Прислать комментарий     Решение

Задача 56665  (#03.008B)

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 5
Классы: 7,8

Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком плюс, а участки пути, по которым мы удалялись от центра, — со знаком минус. Докажите, что для любого такого пути сумма длин участков пути, взятых с указанными знаками, равна нулю.
Прислать комментарий     Решение


Задача 56666  (#03.009)

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Через точку P, лежащую на общей хорде AB двух пересекающихся окружностей, проведены хорда KM первой окружности и хорда LN второй окружности. Докажите, что четырехугольник KLMN вписанный.
Прислать комментарий     Решение


Задача 52779  (#03.010)

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 3
Классы: 8,9

Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 86]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .