ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Года:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 469]      



Задача 73584  (#М49)

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 8,9,10

На карточках написаны все числа от 11111 до 99999 включительно. Затем эти карточки выложили в цепочку в произвольном порядке.
Докажите, что полученное 444445-значное число не является степенью двойки.

Прислать комментарий     Решение

Задача 57075  (#М50)

Темы:   [ Правильные многоугольники ]
[ Раскраски ]
[ Поворот помогает решить задачу ]
[ Принцип крайнего (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 9

Вершины правильного n-угольника окрашены в несколько цветов так, что точки каждого цвета служат вершинами правильного многоугольника.
Докажите, что среди этих многоугольников найдутся два равных.

Прислать комментарий     Решение

Задача 73586  (#М51)

Темы:   [ Тождественные преобразования ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 7,8,9

Если произведение трёх положительных чисел равно 1, а сумма этих чисел строго больше суммы их обратных величин, то ровно одно из этих чисел больше 1. Докажите это.

Прислать комментарий     Решение

Задача 57315  (#М52)

Темы:   [ Неравенство треугольника (прочее) ]
[ Теорема косинусов ]
[ Неравенства для остроугольных треугольников ]
[ Алгебраические задачи на неравенство треугольника ]
[ Доказательство от противного ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5-
Классы: 8,9,10

Автор: Серов М.

Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.
Прислать комментарий     Решение


Задача 53133  (#М53)

Темы:   [ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 5-
Классы: 8,9

В треугольнике ABC через середину M стороны BC и центр O вписанной в этот треугольник окружности проведена прямая MO, которая пересекает высоту AH в точке E. Докажите, что отрезок AE равен радиусу вписанной окружности.

Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 469]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .