Страница:
<< 158 159 160 161
162 163 164 >> [Всего задач: 1984]
В пространстве даны точки
O1,
O2,
O3 и точка
A. Точка
A
симметрично отражается относительно точки
O1, полученная точка
A1
-- относительно
O2, полученная точка
A2 — относительно
O3.
Получаем некоторую точку
A3, которую также последовательно отражаем
относительно
O1,
O2,
O3. Доказать, что полученная точка совпадает с
A.
|
|
|
Сложность: 3+ Классы: 9,10
|
Решить систему уравнений:
3xyz – x³ – y³ – z³ = b³,
x + y + z = 2b,
x² + y² + z² = b².
|
|
|
Сложность: 3+ Классы: 10,11
|
Центр
O описанной около треугольника
ABC окружности отражается симметрично
относительно каждой из сторон. По трём полученным точкам
O1,
O2,
O3 восстановить треугольник
ABC, если все остальное стёрто.
|
|
|
Сложность: 3+ Классы: 10,11
|
Построить треугольник
ABC по точкам
M и
N — основаниям высот
AM и
BN — и прямой, на которой лежит сторона
AB.
|
|
|
Сложность: 3+ Классы: 10,11
|
Окружность радиуса, равного высоте некоторого правильного треугольника, катится
по стороне этого треугольника. Доказать, что дуга, высекаемая сторонами
треугольника на окружности, всё время равна
60
o.
Страница:
<< 158 159 160 161
162 163 164 >> [Всего задач: 1984]