Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.

Вниз   Решение


Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

ВверхВниз   Решение


Докажите, что любое иррациональное число α допускает представление  α = [a0; a1, ..., an–1, αn],  где a0 – целое, a1, a2, ..., an–1 – натуральные,  αn > 1  – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь.

ВверхВниз   Решение


Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC.

ВверхВниз   Решение


Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

ВверхВниз   Решение


На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что  AM = BN = AC.  Точка X на луче CA такова, что  MX = AB  Найдите угол MXN.

ВверхВниз   Решение


Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?

ВверхВниз   Решение


Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


Высота прямоугольного треугольника, опущенная на его гипотенузу, делит биссектрису острого угла в отношении  4 : 3,  считая от вершины.
Найдите величину этого угла.

ВверхВниз   Решение


В квадрате со стороной 100 расположено N кругов радиуса 1, причём всякий отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы один круг. Доказать, что N$ \ge$400.

Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности.

ВверхВниз   Решение


Том Сойер взялся покрасить очень длинный забор, соблюдая условие: любые две доски, между которыми ровно две, ровно три или ровно пять досок, должны быть окрашены в разные цвета. Какое наименьшее количество красок потребуется Тому для этой работы?

ВверхВниз   Решение


Найдите с точностью до 0,01 сотый член x100 последовательности {xn}, если
а) x1 $ \in$ [0; 1], xn + 1 = xn(1 - xn), (n > 1);
б) x1 $ \in$ [0, 1; 0, 9], xn + 1 = 2xn(1 - xn), (n > 1).

Вверх   Решение

Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 2396]      



Задача 111170

Темы:   [ Правильная пирамида ]
[ Теоремы Чевы и Менелая ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD ( S – вершина) точка F – середина ребра SB , а SA=AB . На апофеме SL грани SAD взята точка P так, что SP:SL=7:12 . Сфера с центром на прямой PF , проходит через точки D , F и пересекает прямую AD в точке M , причём MD=l . Найдите длину отрезка AB .
Прислать комментарий     Решение


Задача 111218

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Производная и экстремумы ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Формула Герона ]
Сложность: 4
Классы: 10,11

Основание пирамиды – квадрат. Высота пирамиды пересекает диагональ основания. Найдите наибольший объём такой пирамиды, если периметр диагонального сечения, содержащего высоту пирамиды, равен 5.
Прислать комментарий     Решение


Задача 111278

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина) точки D и E являются серединами рёбер AC и BC соответственно. Через точку E проведена плоскость β , пересекающая рёбра AB и SB и удалённая от точек D и B на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость делит ребро SB , если BC=4 , SC=3 .
Прислать комментарий     Решение


Задача 111279

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD ( S – вершина) AD= и SD=1 . Через точку B проведена плоскость α , пересекающая ребро SC и удалённая от точек A и C на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость α делит ребро SC , если известно, что α не параллельна прямой AC .
Прислать комментарий     Решение


Задача 111280

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина) точки K и L являются серединами рёбер AB и AC соответственно. Через точку L проведена плоскость β , пересекающая рёбра BC и SC и удалённая от точек K и C на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость β делит ребро SC , если AB= , SB= .
Прислать комментарий     Решение


Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 2396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .