ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным. Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если ∠ABD = 74°, ∠DBC = 38°, ∠BDC = 65°. Докажите, что любое иррациональное число α допускает представление α = [a0; a1, ..., an–1, αn], где a0 – целое, a1, a2, ..., an–1 – натуральные, αn > 1 – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь. Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC. Сколько диагоналей имеет выпуклый: На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что AM = BN = AC. Точка X на луче CA такова, что MX = AB Найдите угол MXN. Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?
Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.
Высота прямоугольного треугольника, опущенная на его гипотенузу, делит
биссектрису острого угла в отношении 4 : 3, считая от вершины. В квадрате со стороной 100 расположено N кругов радиуса 1, причём всякий
отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы
один круг. Доказать, что N Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности. Том Сойер взялся покрасить очень длинный забор, соблюдая условие: любые две доски, между которыми ровно две, ровно три или ровно пять досок, должны быть окрашены в разные цвета. Какое наименьшее количество красок потребуется Тому для этой работы?
Найдите с точностью до 0,01 сотый член x100
последовательности {xn}, если
|
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 2396]
В правильной четырёхугольной пирамиде SABCD ( S – вершина) точка
F – середина ребра SB , а SA=
Основание пирамиды – квадрат. Высота пирамиды пересекает диагональ основания. Найдите наибольший объём такой пирамиды, если периметр диагонального сечения, содержащего высоту пирамиды, равен 5.
В правильной треугольной пирамиде SABC ( S – вершина) точки D
и E являются серединами рёбер AC и BC соответственно. Через точку
E проведена плоскость β , пересекающая рёбра AB и SB и
удалённая от точек D и B на одинаковое расстояние, равное
В правильной четырёхугольной пирамиде SABCD ( S – вершина)
AD=
В правильной треугольной пирамиде SABC ( S – вершина) точки K
и L являются серединами рёбер AB и AC соответственно. Через точку
L проведена плоскость β , пересекающая рёбра BC и SC и
удалённая от точек K и C на одинаковое расстояние, равное
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 2396]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке