Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 25 задач
Версия для печати
Убрать все задачи

Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение?

Вниз   Решение


Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.

ВверхВниз   Решение


Окружность с центром на диагонали AC трапеции ABCD ( BC || AD ) проходит через вершины A и B , касается стороны CD в точке C и пересекает основание AD в точке E . Найдите площадь трапеции ABCD , если CD=6 , AE=8 .

ВверхВниз   Решение


Окружность с центром на диагонали AC трапеции ABCD ( BC || AD ) проходит через вершины A и B , касается стороны CD в точке C и пересекает основание AD в точке E . Найдите площадь трапеции ABCD , если BE=26 , DE=9 .

ВверхВниз   Решение


Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)

ВверхВниз   Решение


Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз). Могли ли оказаться отмечены
  а) все числа, кроме, быть может, двух?
  б) все числа, кроме, быть может, одного?
  в) все числа?

ВверхВниз   Решение


Найдите остаток R(x) от деления многочлена  xn + x + 2  на  x² – 1.

ВверхВниз   Решение


Пусть  P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17.  Найдите
  a) сумму коэффициентов этого многочлена;
  б) суммы коэффициентов при чётных и нечётных степенях x.

ВверхВниз   Решение


При каких a и b многочлен  P(x) = (a + b)x5 + abx² + 1  делится на  x² – 3x + 2?

ВверхВниз   Решение


Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение.
Докажите, что у кубического уравнения есть рациональный корень.

ВверхВниз   Решение


а) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьшую площадь имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьший периметр имеет правильный n-угольник.

ВверхВниз   Решение


а) Докажите, что среди всех n-угольников, вписанных в данную окружность, наибольшую площадь имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, вписанных в данную окружность, наибольший периметр имеет правильный n-угольник.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите высоту пирамиды.

ВверхВниз   Решение


При каких значениях n все коэффициенты в разложении бинома Ньютона  (a + b)n  нечётны?

ВверхВниз   Решение


В трапеции ABCD известно, что AB=BC=CD . Диагонали трапеции пересекаются в точке O . Окружность, описанная около треугольника ABO , пересекает основание AD в точке E . Докажите, что BEDC — ромб.

ВверхВниз   Решение


Сколько имеется прямоугольных треугольников, длины сторон которых выражены целыми числами, если один из катетов этих треугольников равен 15?

ВверхВниз   Решение


На стороне AC правильного треугольника ABC взята точка M, и около треугольников ABM и MBC описаны окружности. Точка C делит дугу MCB в отношении $ \cup$ MC : $ \cup$ CB = n. В каком отношении точка A делит дугу MAB?

ВверхВниз   Решение


Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде  ax + by,  где x и y – целые неотрицательные числа.
  а) Каково наибольшее целое число c, не принадлежащее множеству М?
  б) Докажите, что из двух чисел n и  сn  (где n – любое целое) одно принадлежит М, а другое нет.

ВверхВниз   Решение


В сумме  + 1 + 3 + 9 + 27 + 81 + 243 + 729  можно вычеркивать любые слагаемые и изменять некоторые знаки перед оставшимися числами с "+" на "–". Маша хочет таким способом сначала получить выражение, значение которого равно 1, затем, начав сначала, получить выражение, значение которого равно 2, затем (снова начав сначала) получить 3, и так далее. До какого наибольшего целого числа ей удастся это сделать без пропусков?

ВверхВниз   Решение


Факториальная система счисления. Докажите, что каждое натуральное число n может быть единственным образом представлено в виде

n = a1 . 1! + a2 . 2! + a3 . 3! +...,

где 0 $ \leqslant$ a1 $ \leqslant$ 1, 0 $ \leqslant$ a2 $ \leqslant$ 2, 0 $ \leqslant$ a3 $ \leqslant$ 3...

ВверхВниз   Решение


Внутри треугольника ABC взята точка M, причём

$\displaystyle \angle$AMC = 60o + $\displaystyle \angle$ABC$\displaystyle \angle$CMB = 60o + $\displaystyle \angle$CAB$\displaystyle \angle$BMA = 60o + $\displaystyle \angle$BCA.

Докажите, что проекции точки M на стороны треугольника служат вершинами правильного треугольника.

ВверхВниз   Решение


В компании из  2n + 1 человека для любых n человек найдётся отличный от них человек, знакомый с каждым из них.
Докажите, что в этой компании есть человек, знающий всех.

ВверхВниз   Решение


Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
  а) ровно в шесть раз;
  б) ровно в пять раз?

ВверхВниз   Решение


Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Площадь описанного круга в 12 раз больше площади вписанного круга. Найдите углы трапеции.

ВверхВниз   Решение


Прямоугольник покрыт в два слоя карточками 1×2 (над каждой клеткой лежат ровно две карточки). Докажите, что карточки можно разбить на два непересекающихся множества, каждое из которых покрывает весь прямоугольник.

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 501]      



Задача 115661

Темы:   [ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Окружность описана около равностороннего треугольника ABC . На дуге BC , не содержащей точку A , расположена точка M , делящая градусную меру этой дуги в отношении 1:2. Найдите углы треугольника AMB .
Прислать комментарий     Решение


Задача 116491

Темы:   [ Геометрические неравенства (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 7,8,9

В окружности с центром O проведена хорда AB и радиус OK, пересекающий её под прямым углом в точке M. На большей дуге AB окружности выбрана точка P, отличная от середины этой дуги. Прямая PM вторично пересекает окружность в точке Q, а прямая PK пересекает AB в точке R. Докажите, что  KR > MQ.

Прислать комментарий     Решение

Задача 116588

Темы:   [ Шестиугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9,10

Дан выпуклый шестиугольник ABCDEF. Известно, что  ∠FAE = ∠BDC,  а четырёхугольники ABDF и ACDE являются вписанными.
Докажите, что прямые BF и CE параллельны.

Прислать комментарий     Решение

Задача 52417

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Из точки P, расположенной внутри острого угла BAC, опущены перпендикуляры PC1 и PB1 на прямые AB и AC. Докажите, что  ∠C1AP = ∠C1B1P.

Прислать комментарий     Решение

Задача 52848

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Из произвольной точки M внутри острого угла с вершиной A опущены перпендикуляры MP и MQ на его стороны. Из вершины A проведён перпендикуляр AK на PQ. Докажите, что $ \angle$PAK = $ \angle$MAQ.

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .