ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение?
Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.
Окружность с центром на диагонали AC трапеции
ABCD ( BC || AD ) проходит через вершины A
и B , касается стороны CD в точке C и пересекает
основание AD в точке E . Найдите площадь трапеции
ABCD , если CD=6
Окружность с центром на диагонали AC трапеции
ABCD ( BC || AD ) проходит через вершины A
и B , касается стороны CD в точке C и пересекает
основание AD в точке E . Найдите площадь трапеции
ABCD , если BE=26 , DE=9 Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.) Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз).
Могли ли оказаться отмечены Найдите остаток R(x) от деления многочлена xn + x + 2 на x² – 1. Пусть P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17. Найдите При каких a и b многочлен P(x) = (a + b)x5 + abx² + 1 делится на x² – 3x + 2? Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение. а) Докажите, что среди всех n-угольников, описанных около данной
окружности, наименьшую площадь имеет правильный n-угольник.
а) Докажите, что среди всех n-угольников, вписанных в данную
окружность, наибольшую площадь имеет правильный n-угольник.
Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите высоту пирамиды. При каких значениях n все коэффициенты в разложении бинома Ньютона (a + b)n нечётны? В трапеции ABCD известно, что AB=BC=CD . Диагонали трапеции пересекаются в точке O . Окружность, описанная около треугольника ABO , пересекает основание AD в точке E . Докажите, что BEDC — ромб. Сколько имеется прямоугольных треугольников, длины сторон которых выражены целыми числами, если один из катетов этих треугольников равен 15?
На стороне AC правильного треугольника ABC взята точка M, и
около треугольников ABM и MBC описаны окружности. Точка C делит
дугу MCB в отношении
Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде ax + by, где x и y – целые неотрицательные числа. В сумме + 1 + 3 + 9 + 27 + 81 + 243 + 729 можно вычеркивать любые слагаемые и изменять некоторые знаки перед оставшимися числами с "+" на "–". Маша хочет таким способом сначала получить выражение, значение которого равно 1, затем, начав сначала, получить выражение, значение которого равно 2, затем (снова начав сначала) получить 3, и так далее. До какого наибольшего целого числа ей удастся это сделать без пропусков? Факториальная система счисления. Докажите, что каждое натуральное число n может быть единственным образом представлено в виде
n = a1 . 1! + a2 . 2! + a3 . 3! +...,
где
0
Внутри треугольника ABC взята точка M, причём
В компании из 2n + 1 человека для любых n человек найдётся отличный от них человек, знакомый с каждым из них. Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Площадь описанного круга в 12 раз больше площади вписанного круга. Найдите углы трапеции.
Прямоугольник покрыт в два слоя карточками
1×2 (над
каждой клеткой лежат ровно две карточки). Докажите, что карточки
можно разбить на два непересекающихся множества, каждое из
которых покрывает весь прямоугольник.
|
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 501]
Окружность описана около равностороннего треугольника ABC . На дуге BC , не содержащей точку A , расположена точка M , делящая градусную меру этой дуги в отношении 1:2. Найдите углы треугольника AMB .
В окружности с центром O проведена хорда AB и радиус OK, пересекающий её под прямым углом в точке M. На большей дуге AB окружности выбрана точка P, отличная от середины этой дуги. Прямая PM вторично пересекает окружность в точке Q, а прямая PK пересекает AB в точке R. Докажите, что KR > MQ.
Дан выпуклый шестиугольник ABCDEF. Известно, что ∠FAE = ∠BDC, а четырёхугольники ABDF и ACDE являются вписанными.
Из точки P, расположенной внутри острого угла BAC, опущены перпендикуляры PC1 и PB1 на прямые AB и AC. Докажите, что ∠C1AP = ∠C1B1P.
Из произвольной точки M внутри острого угла с вершиной A
опущены перпендикуляры MP и MQ на его стороны. Из вершины A
проведён перпендикуляр AK на PQ. Докажите, что
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке