ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 2393]      



Задача 87340

Темы:   [ Сферы (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

На сфере радиуса 9 расположены точки L , L1 , M , M1 , N и N1 . Отрезки LL1 , MM1 и NN1 попарно перпендикулярны и пересекаются в точке A , отстоящей от центра сферы на расстоянии . В каком отношении точка A делит отрезок NN1 , если известно, что LL1=16 , MM1=14 ?
Прислать комментарий     Решение


Задача 87375

Темы:   [ Сфера, касающаяся ребер тетраэдра ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Сфера касается рёбер AS , BS , BC и AC треугольной пирамиды SABC в точках K , L , M и N соответственно. Найдите отрезок KL , если MN = 7 , NK = 5 , LN = 2 и KL = LM .
Прислать комментарий     Решение


Задача 87376

Темы:   [ Сфера, касающаяся ребер тетраэдра ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Сфера касается рёбер AS , CS , AB и BC треугольной пирамиды SABC в точках P , Q , R и T соответственно. Найдите отрезок QT , если PQ = PR = 8 , PT = и QT на 7 больше, чем RT .
Прислать комментарий     Решение


Задача 87377

Темы:   [ Сфера, касающаяся ребер тетраэдра ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Сфера касается рёбер BS , CS , CA и AB треугольной пирамиды SABC в точках D , E , G и H соответственно. Найдите отрезок EH , если DE = EG = 8 , GH = 6 , HD = 4 .
Прислать комментарий     Решение


Задача 87378

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Сфера касается рёбер AS , CS , AB и BC треугольной пирамиды SABC в точках D , E , F и G соответственно. Найдите отрезок FG , если DE = DF = 8 , DG = 3 и FG на 2 больше, чем GE .
Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .