ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан правильный 2n-угольник. Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?
В треугольной пирамиде ABCD рёбра AB и CD взаимно
перпендикулярны, AD=BC , расстояние от середины E ребра AB до
плоскости ACD равно h , На координатной плоскости задан график функции y = kx + b (см. рисунок). В той же координатной плоскости схематически постройте график функции y = kx² + bx.
В треугольной пирамиде ABCD рёбра AB и DC взаимно
перпендикулярны, Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей? В треугольнике ABC угол C – прямой. На стороне AC
нашлась такая точка D, а на отрезке BD – такая точка K, что ∠B = ∠KAD = ∠AKD.
В треугольной пирамиде ABCD рёбра BC и AD взаимно
перпендикулярны, AB=CD , расстояние от середины O ребра BC до
плоскости ABD равно h , Найдите наименьшее значение x² + y², если x2 – y² + 6x + 4y + 5 = 0. Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD . |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 158]
а) Есть неограниченный набор карточек со словами "abc", "bca", "cab". Из них составляют слово по такому правилу. В качестве начального слова выбирается любая карточка, а далее на каждом шаге к имеющемуся слову можно либо приклеить карточку слева или справа, либо разрезать слово в любом месте (между буквами) и вклеить карточку туда. Можно ли так составить палиндром? б) Есть неограниченный набор красных карточек со словами "abc", "bca", "cab" и синих карточек со словами "cba", "acb", "bac". Из них по тем же правилам составили палиндром. Верно ли, что было использовано одинаковое количество красных и синих карточек?
Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD .
Даны две окружности, пересекающиеся в точках P и Q . C – произвольная точка одной из окружностей, отличная от P и Q ; A , B – вторые точки пересечения прямых CP , CQ с другой окружностью. Найдите геометрическое место центров окружностей, описанных около треугольников ABC .
а) На стол положили (с перекрытиями) несколько одинаковых салфеток, имеющих форму правильного шестиугольника, причём у всех салфеток одна сторона параллельна одной и той же прямой. Всегда ли можно вбить в стол несколько гвоздей так, что все салфетки будут прибиты, причём каждая – только одним гвоздём?
На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 158]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке