ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AB = BC)  на стороне AB выбрана точка D, и вокруг треугольников ADC и BDC описаны окружности S1 и S2 соответственно. Касательная, проведённая к S1 в точке D, пересекает второй раз окружность S2 в точке M. Докажите, что  BM || AC.

   Решение

Задачи

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 1275]      



Задача 108110

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
[ Признаки и свойства касательной ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

Автор: Сонкин М.

Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны.

Прислать комментарий     Решение

Задача 108235

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 8,9

Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AB = BC)  на стороне AB выбрана точка D, и вокруг треугольников ADC и BDC описаны окружности S1 и S2 соответственно. Касательная, проведённая к S1 в точке D, пересекает второй раз окружность S2 в точке M. Докажите, что  BM || AC.

Прислать комментарий     Решение

Задача 108461

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный угол равен половине центрального ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC точка O является центром описанной окружности. Через вершину B проведена прямая, перпендикулярная AO, пересекающая прямую AC в точке K, а через вершину C проведена прямая, также перпендикулярная AO, пересекающая сторону AB в точке M. Найдите BC, если  BK = a,  CM = b.

Прислать комментарий     Решение

Задача 108903

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K, L – середина AC, а точка M на отрезке AB такова, что  ∠AKM = ∠CKL.  Докажите, что  MA = MB.

Прислать комментарий     Решение

Задача 110879

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что D лежит на отрезке AC. Найдите AB, CD и радиус окружности, если  BC = 4,  BD = 3,  ∠BAC = arccos ⅓.

Прислать комментарий     Решение

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .