ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника. Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу. Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции. ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что AB = 2AD. Точки M и N на стороне AC таковы, что AM = NC. На продолжении стороны CB за точку B взята такая точка K, что CN = BK. Найдите угол между прямыми NK и DM. Расстояния от одного из концов диаметра окружности до концов хорды, параллельной этому диаметру, равны 5 и 12. Найдите радиус окружности. Докажите, что в кубе ABCDA1B1C1D1 прямые AC1 и BD перпендикулярны. |
Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 2400]
Точка M равноудалена от трёх прямых AB , BC и AC . Докажите, что ортогональная проекция точки M на плоскость ABC является центром вписанной окружности либо одной из вневписанных окружностей треугольника ABC .
Точка M находится на расстояниях 5 и 4 от двух параллельных прямых m и n и на расстоянии 3 от плоскости, проходящей через эти прямые. Найдите расстояние между прямыми m и n .
Прямая l проходит через точку, лежащую на окружности с центром O и радиусом r . Известно, что ортогональной проекцией прямой l на плоскость окружности является прямая, касающаяся этой окружности. Найдите расстояние от точки O до прямой l .
Докажите, что в кубе ABCDA1B1C1D1 прямые AC1 и BD перпендикулярны.
Докажите, что если ортогональная проекция одной из вершин треугольной пирамиды на плоскость противоположной грани совпадает с точкой пересечения высот этой грани, то это же будет верно для любой другой вершины пирамиды.
Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 2400]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке