ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Положительные числа х1, ..., хk удовлетворяют неравенствам |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 117]
Приведённые квадратные трёхчлены f(x) и g(x) таковы, что уравнения f(g(x)) = 0 и g(f(x)) = 0 не имеют вещественных корней.
Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству P² + Q² = R². Докажите, что все корни одного из многочленов третьей степени – действительные.
Положительные числа х1, ..., хk удовлетворяют неравенствам
Два многочлена P(x) = x4 + ax³ + bx² + cx + d и Q(x) = x² + px + q принимают отрицательные значения на некотором интервале I длины более 2, а вне I – неотрицательны. Докажите, что найдётся такая точка x0, что P(x0) < Q(x0).
Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 117] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|