ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В однокруговом футбольном турнире играли n > 4 команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков. Пусть AF – медиана треугольника ABC, D – середина отрезка AF, E – точка пересечения прямой CD со стороной AB. Оказалось, что BD = BF. Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из этих цифр не равна 9, либо вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью таких операций из числа 1234 получить число 2002? Назовем многогранник хорошим, если его объем (измеренный в м3 ) численно равен площади его поверхности (измеренной в м2 ). Можно ли какой-нибудь хороший тетраэдр разместить внутри какого-нибудь хорошего параллелепипеда? Проведена окружность S с центром в вершине C равнобедренного треугольника ABC ( AC=BC ). Радиус окружности меньше AC . Найдите на этой окружности такую точку P , чтобы касательная к окружности, проведённая в этой точке, делила пополам угол APB . Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья? По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю. Клетчатый квадрат 100×100 разрезан на доминошки. Двое играют в игру. Каждым ходом игрок склеивает две соседних по стороне клетки, между которыми был проведён разрез. Игрок проигрывает, если после его хода фигура получилась связной, то есть весь квадрат можно поднять со стола, держа его за одну клетку. Кто выиграет при правильной игре – начинающий или его соперник?
В трапеции ABCD с меньшим основанием BC и
площадью, равной 2, прямые BC и AD касаются
окружности диаметром Придворный астролог царя Гороха называет время суток хорошим, если на часах с центральной секундной стрелкой при мгновенном обходе циферблата по ходу часов минутная стрелка встречается после часовой и перед секундной. Какого времени в сутках больше: хорошего или плохого? (Стрелки часов движутся с постоянной скоростью.) Угол боковой грани с плоскостью основания правильной шестиугольной пирамиды равен β . Найдите плоский угол при вершине пирамиды. |
Страница: << 172 173 174 175 176 177 178 >> [Всего задач: 2399]
Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол бокового ребра с плоскостью основания пирамиды.
Угол боковой грани с плоскостью основания правильной шестиугольной пирамиды равен β . Найдите угол между соседними боковыми гранями.
Угол между соседними боковыми гранями правильной шестиугольной пирамиды равен γ . Найдите угол боковой грани с плоскостью основания.
Угол боковой грани с плоскостью основания правильной шестиугольной пирамиды равен β . Найдите плоский угол при вершине пирамиды.
Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол боковой грани с плоскостью основания пирамиды.
Страница: << 172 173 174 175 176 177 178 >> [Всего задач: 2399]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке