ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали граней прямоугольного параллелепипеда равны , и 2. Найдите его объём.

   Решение

Задачи

Страница: << 186 187 188 189 190 191 192 >> [Всего задач: 2393]      



Задача 109365

Темы:   [ Прямоугольные параллелепипеды ]
[ Объем параллелепипеда ]
Сложность: 3
Классы: 10,11

Диагонали граней прямоугольного параллелепипеда равны , и 2. Найдите его объём.
Прислать комментарий     Решение


Задача 109367

Темы:   [ Параллелепипеды (прочее) ]
[ Объем помогает решить задачу ]
Сложность: 3
Классы: 10,11

Расстояния от трёх вершин параллелепипеда до противоположных граней равны 2, 3 и 4. Полная поверхность параллелепипеда равна 36. Найдите площади граней параллелепипеда.
Прислать комментарий     Решение


Задача 109368

Темы:   [ Подобие ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Высота пирамиды равна 3, площадь основания равна 9. Найдите объём призмы, одно основание которой принадлежит основанию пирамиды, а противоположное основание является сечением пирамиды плоскостью, проходящей на расстоянии 1 от вершины.
Прислать комментарий     Решение


Задача 109369

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Объем параллелепипеда ]
Сложность: 3
Классы: 10,11

Найдите объём параллелепипеда, две грани которого ромбы со стороной 1 и острым углом 60o , а остальные грани – квадраты.
Прислать комментарий     Решение


Задача 109370

Темы:   [ Объем тела равен сумме объемов его частей ]
[ Вычисление объемов ]
Сложность: 3
Классы: 10,11

В вершинах A , B и C равностороннего треугольника ABC со стороной 1 восставлены к его плоскости перпендикуляры и на них взяты точки A1 , B1 и C1 , находящиеся по одну сторону от плоскости ABC , причём AA1 = 4 , BB1 = 5 и CC1 = 6 . Найдите объём многогранника ABCA1B1C1 .
Прислать комментарий     Решение


Страница: << 186 187 188 189 190 191 192 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .