ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Приведенные квадратные трёхчлены f(x) и g(x) принимают отрицательные значения на непересекающихся интервалах. |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 92]
Докажите, что если α < β, то Sα(x) ≤ Sβ(x), причём равенство возможно только когда x1 = x2 = ... = xn.
На плоскости даны парабола y = x² и окружность, имеющие ровно две общие точки: A и B. Оказалось, что касательные к окружности и параболе в точке A совпадают. Обязательно ли тогда касательные к окружности и параболе в точке B также совпадают?
Дано натуральное число n > 3. Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k?
Приведенные квадратные трёхчлены f(x) и g(x) принимают отрицательные значения на непересекающихся интервалах.
Докажите, что α=γ или α=τ .
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 92] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|