Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 30 задач
Версия для печати
Убрать все задачи

AB — диаметр окружности, CD — хорда этой окружности. Перпендикуляры к хорде, проведённые через её концы C и D, пересекают прямую AB в точках K и M соответственно. Докажите, что AK = BM.

Вниз   Решение


Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что  BL = СМ.  Докажите, что треугольник LMK – также прямоугольный равнобедренный.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.

ВверхВниз   Решение


В стране Древляндия 101 город, и некоторые из них соединены дорогами. При этом каждые два города соединяет ровно один путь.
Сколько в этой стране дорог?

ВверхВниз   Решение


Стороны треугольника ABC касаются вписанной окружности в точках K, P и M, причём точка M расположена на стороне BC. Найдите угол KMP, если  ∠A = 2α.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по центру его описанной окружности и двум прямым, на которых лежат высоты треугольника.

ВверхВниз   Решение


В кружке у каждого члена имеется один друг и один враг. Доказать, что
  а) число членов чётно.
  б) кружок можно разделить на два нейтральных кружка.

ВверхВниз   Решение


Отрезки AA1 , BB1 и CC1 , концы которых лежат на сфере радиуса 10, попарно перпендикулярны и пересекаются в точке M . Известно, что AA1=12 , BB1 =18 и CM:MC1=11:3 . Найдите расстояние от центра сферы до точки M,

ВверхВниз   Решение


p простых чисел a1, a2, ..., ap образуют возрастающую арифметическую прогрессию и  a1 > p.
Доказать, что если p – простое число, то разность прогрессии делится на p.

ВверхВниз   Решение


Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
  а) Могло ли случиться, что до a5 последовательность убывает  (a1 > a2 > a3 > a4 > a5),  а начиная с a5 – возрастает  (a5 < a6 < a7 < ...)?
  б) А могло ли случиться наоборот: до a5 последовательность возрастает, а начиная с a5 – убывает?

ВверхВниз   Решение


Пусть E – одна из двух точек пересечения окружностей ω1 и ω2. Пусть AB – общая внешняя касательная этих окружностей, прямая CD параллельна AB, причем точки A и C лежат на ω1, а точки B и D – на ω2. Окружности ABE и CDE повторно пересекаются в точке F. Докажите, что F делит одну из дуг CD окружности CDE пополам.

ВверхВниз   Решение


AB и AC — две хорды, образующие угол BAC, равный 70o. Через точки B и C проведены касательные до пересечения в точке M. Найдите $ \angle$BMC.

ВверхВниз   Решение


Окружность вписана в треугольник со сторонами, равными a, b и c. Найдите отрезки, на которые точка касания делит сторону, равную a.

ВверхВниз   Решение


Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.

ВверхВниз   Решение


Постройте хорду данной окружности, равную и параллельную заданному отрезку.

ВверхВниз   Решение


На доске написаны две суммы:

1 + 22 + 333 + 4444 + 55555 + 666666 +7777777 + 88888888 + 999999999
9 + 98 + 987 + 9876 + 98765 + 987654 + 9876543 + 98765432 + 987654321

Определите, какая из них больше (или они равны).

ВверхВниз   Решение


Плоская выпуклая фигура ограничена отрезками AB и AC и дугой BC некоторой окружности. Постройте какую-нибудь прямую, которая делит пополам её площадь.

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
  а) При каком положении точки X длина отрезка MN будет наименьшей?
  б) При каком положении точки X площадь четырёхугольника CMXN будет наибольшей?

ВверхВниз   Решение


Докажите, что  a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 $ \geq$ 4$ \sqrt{3}$S.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум углам A, B и периметру P.

ВверхВниз   Решение


Диагонали вписанно-описанного четырехугольника ABCD пересекаются в точке L. Даны три отрезка, равные AL, BL, CL. Восстановите четырехугольник с помощью циркуля и линейки.

ВверхВниз   Решение


На боковой стороне BC равнобедренного треугольника ABC как на диаметре построена окружность, пересекающая основание этого треугольника в точке D. Найдите расстояние от вершины A до центра окружности, если  AD =   и  ∠ABC = 120°.

ВверхВниз   Решение


Дан вписанный четырехугольник ABCD. На сторонах AD и CD взяты точки E и F так, что AE=BC и AB=CF. Пусть M – середина EF. Докажите, что угол AMC прямой.

ВверхВниз   Решение


Доказать, что в двудольном плоском графе  E ≥ 2F,  если  E ≥ 2  (E – число рёбер, F – число областей).

ВверхВниз   Решение


Доказать, что в последовательности 11, 111, 1111, 11111, ... нет точных квадратов.

ВверхВниз   Решение


Найдите натуральное число, большее единицы, которое встречается в треугольнике Паскаля
  а) больше трёх раз.
  б) больше четырёх раз.

ВверхВниз   Решение


Пусть X – такая точка внутри треугольника ABC, что  XA·BC = XB·AC = XC·ABI1, I2, I3 – центры вписанных окружностей треугольников XBC, XCA и XAB соответственно. Докажите, что прямые AI1, BI2 и CI3 пересекаются в одной точке.

ВверхВниз   Решение


Даны прямая l и точки A и B по разные стороны от неё. С помощью циркуля и линейки постройте такую точку M, что угол между AM и l в два раза меньше угла между BM и l, если известно, что эти углы не имеют общих сторон.

ВверхВниз   Решение


Что больше 200! или 100200?

ВверхВниз   Решение


Основание CD, диагональ BD и боковая сторона AD трапеции ABCD равны p. Боковая сторона BC равна q. Найдите диагональ AC.

Вверх   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 401]      



Задача 53711

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 8,9

AB — диаметр окружности, CD — хорда этой окружности. Перпендикуляры к хорде, проведённые через её концы C и D, пересекают прямую AB в точках K и M соответственно. Докажите, что AK = BM.

Прислать комментарий     Решение


Задача 55776

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Диаметр, хорды и секущие ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте хорду данной окружности, которую два данных радиуса разделили бы на три равные части.

Прислать комментарий     Решение


Задача 52453

Темы:   [ Окружности (построения) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Построение окружностей ]
Сложность: 4
Классы: 8,9

Через данную точку проведите окружность, касающуюся данной прямой и данной окружности.
Прислать комментарий     Решение


Задача 52464

 [Формула Эйлера]
Темы:   [ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
Сложность: 4
Классы: 8,9

Докажите формулу Эйлера: O1O22 = R2-2rR , где O1 , O2 — центры соответственно вписанной и описанной окружностей треугольника, r , R — радиусы этих окружностей.
Прислать комментарий     Решение


Задача 52482

Темы:   [ Вспомогательная окружность ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 8,9

Основание CD, диагональ BD и боковая сторона AD трапеции ABCD равны p. Боковая сторона BC равна q. Найдите диагональ AC.

Прислать комментарий     Решение


Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .