ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Центр окружности, вписанной в прямоугольную трапецию, удалён от концов её боковой стороны на расстояния 15 и 20. Найдите стороны трапеции.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 159]      



Задача 52651

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Центр окружности, вписанной в прямоугольную трапецию, удалён от концов её боковой стороны на расстояния 15 и 20. Найдите стороны трапеции.

Прислать комментарий     Решение


Задача 52739

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В прямоугольной трапеции лежат две окружности. Одна из них, радиуса 4, вписана в трапецию, а вторая, радиуса 1, касается двух сторон трапеции и первой окружности. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 53064

Темы:   [ Окружность, вписанная в угол ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

К окружности проведены касательные, касающиеся её в концах диаметра AB. Произвольная касательная к окружности пересекает эти касательные в точках K и M. Докажите, что произведение AK . BM постоянно.

Прислать комментарий     Решение


Задача 53260

Темы:   [ Вневписанные окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) сторона AC = 10. В угол ABC вписана окружность с диаметром 15 так, что она касается стороны AC в её середине. Найдите радиус окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 54935

Темы:   [ Построения с помощью вычислений ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки по данному отрезку a, постройте отрезок b, где

а) a = $ \sqrt{5}$, b = 1;

б) a = 7, b = $ \sqrt{7}$.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .