Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Докажите, что если  а < 1,  b < 1  и  a + b ≥ 0,5,  то  (1 – a)(1 – b) ≤ 9/16.

Вниз   Решение


Объединение нескольких кругов имеет площадь 1. Доказать, что из них можно выбрать несколько попарно непересекающихся кругов, сумма площадей которых больше $ {\frac{1}{9}}$. (Сравни с задачей 78201.)

ВверхВниз   Решение


В равнобедренной трапеции высота равна 10, а диагонали взаимно перпендикулярны. Найдите среднюю линию трапеции.

ВверхВниз   Решение


Окружности с центрами O1 и O2 касаются внешним образом в точке K. Некоторая прямая касается этих окружностей в различных точках A и B и пересекает их общую касательную, проходящую через точку K, в точке M. Докажите, что $ \angle$O1MO2 = $ \angle$AKB = 90o.

ВверхВниз   Решение


Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.
Сколько человек в семье?

ВверхВниз   Решение


Площадь треугольника ABC равна 1, AC = 2BC, точка K — середина стороны AC. Окружность с центром в точке K пересекает сторону AB в точках M и N, при этом AM = MN = NB. Найдите площадь части треугольника ABC, заключённой внутри круга.

ВверхВниз   Решение


10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:
  а) перевернуть четыре фишки, стоящие подряд;
  б) перевернуть четыре фишки, расположенные так:  ××0××  (× – фишка, входящая в четвёрку, 0 – не входящая).
Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?

ВверхВниз   Решение


a, b, c ≥ 0.  Докажите, что   .

ВверхВниз   Решение


Около окружности описана равнобедренная трапеция с углом 30o . Её средняя линия равна 10. Найдите радиус окружности.

ВверхВниз   Решение


Известно, что  (m, n) > 1.  Что больше φ(mn) или  φ(m)φ(n)?  Определение функции φ(n) см. в задаче 60758.

ВверхВниз   Решение


В треугольнике ABC проведены высоты AH, BK и CL. Докажите, что  AK·BL·CH = AL·BH·CK = HK·KL·LH.

ВверхВниз   Решение


В трапеции ABCD ( BC || AD ) известно, что AB = c и расстояние от середины отрезка CD до прямой AB равно d . Найдите площадь трапеции.

ВверхВниз   Решение


Решите уравнения   а)  φ(x) = 2;   б)  φ(x) = 8;   в)  φ(x) = 12;   г)  φ(x) = 14.

ВверхВниз   Решение


Две окружности касаются друг друга внешним образом в точке D. Прямая касается одной из этих окружностей в точке A и пересекает другую в точках B и C. Докажите, что точка A равноудалена от прямых BD и CD.

ВверхВниз   Решение


Автор: Фольклор

Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого.

ВверхВниз   Решение


AA1, BB1 и CC1 – высоты треугольника ABC. Докажите, что

ВверхВниз   Решение


CD - медиана треугольника ABC. Окружности вписанные в треугольники ACD и BCD касаются отрезка CD в точках M и N. Найдите MN, если AC - BC = 2.

ВверхВниз   Решение


Две медианы треугольника равны. Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


В треугольнике ABC сторона AB равна 6. Основание D высоты CD лежит на стороне AB , причём AD=BC=4 . Найдите высоту AE .

ВверхВниз   Решение


Автор: Шлейфер Р.

n чисел  (n > 1)  называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на  n – 1.  Пусть  a, b, c, ...   – n близких чисел, S – их сумма. Докажите, что
  а) все они положительны;
  б)  a + b > c;
  в)  a + b > S/n–1.

ВверхВниз   Решение


В равнобедренной трапеции PQRS диагонали перпендикулярны и точкой пересечения O делятся в отношении 1 : $ \sqrt{3}$. Большее основание PS трапеции равно 1. Найдите площадь общей части кругов, описанных около треугольников PQO и POS.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 75]      



Задача 53189

Темы:   [ Площадь круга, сектора и сегмента ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции PQRS диагонали перпендикулярны и точкой пересечения O делятся в отношении 1 : $ \sqrt{3}$. Большее основание PS трапеции равно 1. Найдите площадь общей части кругов, описанных около треугольников PQO и POS.

Прислать комментарий     Решение


Задача 53190

Темы:   [ Площадь круга, сектора и сегмента ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В прямоугольнике ABCD диагонали пересекаются в точке O, сторона AB равна 1, а угол OAB равен 60o. Найдите площадь общей части кругов, описанных около треугольников AOB и BOC.

Прислать комментарий     Решение


Задача 102465

Темы:   [ Площадь круга, сектора и сегмента ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В круг радиуса 12 вписан угол величины 120o так, что центр круга лежит на биссектрисе угла. Укажите площадь части круга, расположенной вне угла.

Прислать комментарий     Решение


Задача 108526

Темы:   [ Площадь круга, сектора и сегмента ]
[ Пересекающиеся окружности ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Два круга, расстояние между центрами которых равно $ \sqrt{3}$ + 1, имеют радиусы $ \sqrt{2}$ и 2. Найдите отношение площади круга, вписанного в общую часть данных кругов, к площади общей части.

Прислать комментарий     Решение


Задача 108527

Темы:   [ Площадь круга, сектора и сегмента ]
[ Пересекающиеся окружности ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Два круга, расстояние между центрами которых равно $ \sqrt{3}$, имеют радиусы $ \sqrt{3}$ и 3. Найдите отношение площади круга, вписанного в общую часть данных кругов, к площади общей части.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .